Question: /*16. Does the constant error variance assumption hold? The databreastfeeding.csv variables measured on baby and mother. Sex: Infant sex MomAge: Mom age at birth of
/*16. Does the constant error variance assumption hold?
The databreastfeeding.csv
variables measured on baby and mother.
Sex: Infant sex
MomAge: Mom age at birth of infant (years)
MomEdu: Mom years of education
MomWtPrePg: Mom weight pre-pregnancy (pounds)
PregWtGain: Mom weight gained during pregnancy (pounds)
MomWtBirth: Mom weight at birth of infant (pounds)
InfantWtBirth: Infant Birth Weight (pounds)
Breastfed: Whether the mother breastfed for at least a week
BreastfeedDuration: Duration of breastfeeding (weeks), truncated at 50 weeks
AgeBeganSolids: Age introduced solid foods (weeks)
InfantWt6m: Infant weight at 6 months (pounds)
InfantWtGain: Infant weight at 6 months - infant birth weight
ToddlerWt18m: Toddler weight at 18 months (pounds)
ToddlerWtGain: Toddler weight at 18 months - infant birth weight
MomWt18m: Mom weight (pounds) at infant age 18 Months
MomWtLoss: Mom weight loss from infant birth to 18 months (pounds)
| Residuals vs Fitted Values |
The REG Procedure
Model: MODEL1
Dependent Variable: ToddlerWtGain
| Number of Observations Read | 141 |
|---|---|
| Number of Observations Used | 122 |
| Number of Observations with Missing Values | 19 |
| Analysis of Variance | |||||
|---|---|---|---|---|---|
| Source | DF | Sum of Squares | Mean Square | F Value | Pr>F |
| Model | 2 | 39.29313 | 19.64656 | 1.68 | 0.1913 |
| Error | 119 | 1393.99196 | 11.71422 | ||
| Corrected Total | 121 | 1433.28509 |
| Root MSE | 3.42260 | R-Square | 0.0274 |
|---|---|---|---|
| Dependent Mean | 16.64672 | Adj R-Sq | 0.0111 |
| Coeff Var | 20.56023 |
| Parameter Estimates | |||||
|---|---|---|---|---|---|
| Variable | DF | Parameter Estimate | Standard Error | tValue | Pr>|t| |
| Intercept | 1 | 18.52905 | 1.22458 | 15.13 | <.0001 |
| AgeBeganSolids | 1 | -0.12087 | 0.06722 | -1.80 | 0.0747 |
| BreastfeedDuration | 1 | 0.01263 | 0.01620 | 0.78 | 0.4371 |
| Residuals vs Fitted Values |
The REG Procedure
Model: MODEL1
Dependent Variable: ToddlerWtGain
| Output Statistics | |||
|---|---|---|---|
| Obs | Dependent Variable | Predicted Value | Residual |
| 1 | . | 16.1117 | . |
| 2 | 15.9 | 16.0342 | -0.1642 |
| 3 | . | 17.8038 | . |
| 4 | 18.6 | 16.4743 | 2.1357 |
| 5 | 16.7 | 17.4685 | -0.7785 |
| 6 | 17.9 | 17.2268 | 0.6432 |
| 7 | 16.4 | 16.1117 | 0.2583 |
| 8 | 17.1 | 16.9182 | 0.1918 |
| 9 | 13.1 | 16.7956 | -3.6656 |
| 10 | 14.4 | 16.6170 | -2.2470 |
| 11 | 10.7 | 16.2633 | -5.6033 |
| 12 | 14.5 | 16.7287 | -2.2387 |
| 13 | 15.2 | 18.1937 | -2.9737 |
| 14 | . | 15.9205 | . |
| 15 | 17.7 | 15.7491 | 1.9609 |
| 16 | 17.3 | 17.1292 | 0.1608 |
| 17 | 19.5 | 16.8389 | 2.6811 |
| 18 | 16.8 | 16.9885 | -0.2085 |
| 19 | 15.3 | 16.8659 | -1.6059 |
| 20 | 20.2 | 16.7252 | 3.5048 |
| 21 | 17.6 | 15.8375 | 1.7925 |
| 22 | 20.0 | 16.6566 | 3.3534 |
| 23 | 13.9 | 17.0786 | -3.2186 |
| 24 | 15.7 | 16.9851 | -1.2551 |
| 25 | 16.3 | 16.8622 | -0.6122 |
| 26 | 22.8 | 16.3661 | 6.3839 |
| 27 | 15.3 | 15.6787 | -0.4287 |
| 28 | 18.9 | 17.3477 | 1.5723 |
| 29 | 22.4 | 16.6583 | 5.6917 |
| 30 | 12.9 | 15.8792 | -2.9392 |
| 31 | 15.4 | 16.5555 | -1.1755 |
| 32 | 16.3 | 17.2268 | -0.9168 |
| 33 | 17.2 | 14.0986 | 3.0714 |
| 34 | 18.9 | 16.7433 | 2.1467 |
| 35 | 22.2 | 16.4835 | 5.7065 |
| 36 | . | 17.6126 | . |
| 37 | 13.4 | 15.6842 | -2.2542 |
| 38 | 18.3 | 17.3422 | 0.9078 |
| 39 | 14.2 | 17.1005 | -2.8705 |
| 40 | . | . | . |
| 41 | 13.7 | 16.5016 | -2.8116 |
| 42 | 14.2 | 15.8973 | -1.7173 |
| 43 | 18.8 | 16.6457 | 2.1543 |
| 44 | 14.8 | 16.2599 | -1.5099 |
| 45 | 15.8 | 16.7252 | -0.8852 |
| 46 | 15.4 | 16.2056 | -0.7856 |
| 47 | 15.4 | 16.3391 | -0.9691 |
| 48 | . | 15.8700 | . |
| 49 | 19.0 | 16.5952 | 2.3648 |
| 50 | 14.6 | 16.7433 | -2.1933 |
| 51 | 17.5 | 17.5621 | -0.1021 |
| 52 | . | . | . |
| 53 | 16.4 | 16.6078 | -0.1878 |
| 54 | 19.3 | 17.5621 | 1.7379 |
| 55 | 15.4 | 15.5183 | -0.1083 |
| 56 | 14.1 | 16.8857 | -2.8257 |
| 57 | 18.1 | 16.8478 | 1.2722 |
| 58 | 15.9 | 15.9079 | -0.0579 |
| 59 | 23.0 | 16.4743 | 6.5157 |
| 60 | 23.6 | 17.2268 | 6.3632 |
| 61 | 16.3 | 17.1292 | -0.8692 |
| 62 | 17.4 | 16.4996 | 0.8604 |
| 63 | 15.9 | 17.5874 | -1.7374 |
| 64 | 13.8 | 16.7433 | -2.9433 |
| 65 | 12.6 | 16.5105 | -3.9205 |
| 66 | . | 16.2326 | . |
| 67 | 17.9 | 16.9851 | 0.9449 |
| 68 | 18.3 | 16.5952 | 1.7148 |
| 69 | 18.8 | 18.5509 | 0.2191 |
| 70 | 19.0 | 17.1329 | 1.8171 |
| 71 | 14.4 | 16.1117 | -1.7117 |
| 72 | . | . | . |
| 73 | 16.8 | 16.8226 | 0.007449 |
| 74 | . | 16.6962 | . |
| 75 | 16.7 | 16.2599 | 0.4201 |
| 76 | . | 17.5621 | . |
| 77 | 18.0 | 16.5231 | 1.4369 |
| 78 | 17.7 | 16.4545 | 1.2255 |
| 79 | . | 15.9908 | . |
| 80 | 13.7 | 16.2599 | -2.5599 |
| 81 | 14.6 | 16.8983 | -2.3183 |
| 82 | 17.4 | 16.1496 | 1.2904 |
| 83 | 21.6 | 17.6505 | 3.9395 |
| 84 | 17.1 | 15.7996 | 1.3404 |
| 85 | 22.6 | 16.6331 | 5.9469 |
| 86 | 17.7 | 16.1117 | 1.6183 |
| 87 | 11.8 | 16.2599 | -4.4299 |
| 88 | 15.3 | 16.4511 | -1.1111 |
| 89 | 15.5 | 16.8369 | -1.3769 |
| 90 | 18.9 | 16.5016 | 2.4384 |
| 91 | . | . | . |
| 92 | 15.1 | 16.2599 | -1.1399 |
| 93 | 18.1 | 17.3060 | 0.8340 |
| 94 | 15.1 | 16.5952 | -1.4752 |
| 95 | 18.3 | 16.8478 | 1.4622 |
| 96 | 20.3 | 16.5627 | 3.7273 |
| 97 | . | 16.5555 | . |
| 98 | 15.2 | 15.8826 | -0.7226 |
| 99 | 12.6 | 17.2268 | -4.6168 |
| 100 | 19.7 | 16.5016 | 3.1984 |
| 101 | 19.0 | 16.9851 | 2.0049 |
| 102 | -8.1 | 16.1117 | -24.2117 |
| 103 | 17.3 | 17.0786 | 0.1714 |
| 104 | 16.2 | 18.1937 | -2.0037 |
| 105 | . | 17.4685 | . |
| 106 | 17.1 | 17.1094 | -0.0494 |
| 107 | . | 16.6457 | . |
| 108 | . | 16.5952 | . |
| 109 | 19.5 | 16.6170 | 2.8430 |
| 110 | 15.2 | 16.7433 | -1.5933 |
| 111 | 15.3 | 16.2093 | -0.9093 |
| 112 | 23.8 | 16.2599 | 7.5501 |
| 113 | 19.0 | 16.6583 | 2.3717 |
| 114 | 19.9 | 16.9291 | 2.9309 |
| 115 | 14.1 | 16.9489 | -2.8489 |
| 116 | 17.8 | 16.2599 | 1.5301 |
| 117 | 14.8 | 16.6006 | -1.7906 |
| 118 | 21.9 | 16.3643 | 5.5657 |
| 119 | . | 16.8622 | . |
| 120 | 17.2 | 16.7433 | 0.4267 |
| 121 | 18.2 | 17.1131 | 1.0669 |
| 122 | 15.6 | 15.8809 | -0.2609 |
| 123 | 20.4 | 16.8966 | 3.5034 |
| 124 | . | 16.4743 | . |
| 125 | 13.9 | 15.9188 | -2.0188 |
| 126 | 13.1 | 17.1544 | -4.0844 |
| 127 | 15.5 | 16.2599 | -0.7299 |
| 128 | 18.9 | 16.8280 | 2.0820 |
| 129 | 18.4 | 16.2128 | 2.2172 |
| 130 | 15.2 | 16.6873 | -1.5173 |
| 131 | 17.6 | 16.1622 | 1.3878 |
| 132 | 15.4 | 16.0035 | -0.5635 |
| 133 | 13.1 | 16.5952 | -3.4852 |
| 134 | 15.6 | 16.5248 | -0.9348 |
| 135 | 14.4 | 16.7973 | -2.3873 |
| 136 | 15.6 | 16.9506 | -1.3106 |
| 137 | 17.2 | 16.7468 | 0.4332 |
| 138 | 18.5 | 17.2268 | 1.2732 |
| 139 | 17.8 | 16.8082 | 1.0318 |
| 140 | 13.4 | 16.7433 | -3.3233 |
| 141 | 15.6 | 16.7181 | -1.1381 |
| Sum of Residuals | 0 |
|---|---|
| Sum of Squared Residuals | 1393.99196 |
| Predicted Residual SS (PRESS) | 1465.07304 |
| Residuals vs Fitted Values |
The UNIVARIATE Procedure
Variable: resid (Residual)
| Moments | |||
|---|---|---|---|
| N | 122 | Sum Weights | 122 |
| Mean | 0 | Sum Observations | 0 |
| Std Deviation | 3.39420016 | Variance | 11.5205947 |
| Skewness | -2.7218523 | Kurtosis | 20.5842563 |
| Uncorrected SS | 1393.99196 | Corrected SS | 1393.99196 |
| Coeff Variation | . | Std Error Mean | 0.30729644 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 0.00000 | Std Deviation | 3.39420 |
| Median | -0.07998 | Variance | 11.52059 |
| Mode | . | Range | 31.76183 |
| Interquartile Range | 3.34381 |
| TestsforLocation:Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 0 | Pr > |t| | 1.0000 |
| Sign | M | -2 | Pr >= |M| | 0.7861 |
| Signed Rank | S | 76.5 | Pr >= |S| | 0.8460 |
| Tests for Normality | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Shapiro-Wilk | W | 0.797663 | Pr < W | <0.0001 |
| Kolmogorov-Smirnov | D | 0.108514 | Pr > D | <0.0100 |
| Cramer-von Mises | W-Sq | 0.349792 | Pr > W-Sq | <0.0050 |
| Anderson-Darling | A-Sq | 2.626085 | Pr > A-Sq | <0.0050 |
| Quantiles(Definition5) | |
|---|---|
| Level | Quantile |
| 100% Max | 7.5501429 |
| 99% | 6.5157074 |
| 95% | 5.6916755 |
| 90% | 3.3533882 |
| 75% Q3 | 1.7378962 |
| 50% Median | -0.0799777 |
| 25% Q1 | -1.6059093 |
| 10% | -2.9391605 |
| 5% | -3.6655726 |
| 1% | -5.6032825 |
| 0% Min | -24.2116889 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| -24.21169 | 102 | 5.94694 | 85 |
| -5.60328 | 11 | 6.36320 | 60 |
| -4.61680 | 99 | 6.38394 | 26 |
| -4.42986 | 87 | 6.51571 | 59 |
| -4.08443 | 126 | 7.55014 | 112 |
| Missing Values | |||
|---|---|---|---|
| Missing Value | Count | Percent Of | |
| All Obs | Missing Obs | ||
| . | 19 | 13.48 | 100.00 |
| Residuals vs Fitted Values |
The UNIVARIATE Procedure
| Residuals vs Fitted Values |
The UNIVARIATE Procedure
Fitted Normal Distribution for resid (Residual)
| Parameters for Normal Distribution | ||
|---|---|---|
| Parameter | Symbol | Estimate |
| Mean | Mu | 0 |
| Std Dev | Sigma | 3.3942 |
| Goodness-of-Fit Tests for Normal Distribution | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Kolmogorov-Smirnov | D | 0.10851383 | Pr > D | <0.010 |
| Cramer-von Mises | W-Sq | 0.34979195 | Pr > W-Sq | <0.005 |
| Anderson-Darling | A-Sq | 2.62608524 | Pr > A-Sq | <0.005 |
| Quantiles for Normal Distribution | ||
|---|---|---|
| Percent | Quantile | |
| Observed | Estimated | |
| 1.0 | -5.60328 | -7.89609 |
| 5.0 | -3.66557 | -5.58296 |
| 10.0 | -2.93916 | -4.34984 |
| 25.0 | -1.60591 | -2.28935 |
| 50.0 | -0.07998 | 0.00000 |
| 75.0 | 1.73790 | 2.28935 |
| 90.0 | 3.35339 | 4.34984 |
| 95.0 | 5.69168 | 5.58296 |
| 99.0 | 6.51571 | 7.89609 |
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts

Study Help