Question: /*16. Does the constant error variance assumption hold? The databreastfeeding.csv variables measured on baby and mother. Sex: Infant sex MomAge: Mom age at birth of

/*16. Does the constant error variance assumption hold?

The databreastfeeding.csv

variables measured on baby and mother.

Sex: Infant sex

MomAge: Mom age at birth of infant (years)

MomEdu: Mom years of education

MomWtPrePg: Mom weight pre-pregnancy (pounds)

PregWtGain: Mom weight gained during pregnancy (pounds)

MomWtBirth: Mom weight at birth of infant (pounds)

InfantWtBirth: Infant Birth Weight (pounds)

Breastfed: Whether the mother breastfed for at least a week

BreastfeedDuration: Duration of breastfeeding (weeks), truncated at 50 weeks

AgeBeganSolids: Age introduced solid foods (weeks)

InfantWt6m: Infant weight at 6 months (pounds)

InfantWtGain: Infant weight at 6 months - infant birth weight

ToddlerWt18m: Toddler weight at 18 months (pounds)

ToddlerWtGain: Toddler weight at 18 months - infant birth weight

MomWt18m: Mom weight (pounds) at infant age 18 Months

MomWtLoss: Mom weight loss from infant birth to 18 months (pounds)

Residuals vs Fitted Values

The REG Procedure

Model: MODEL1

Dependent Variable: ToddlerWtGain

Number of Observations Read 141
Number of Observations Used 122
Number of Observations with Missing Values 19

Analysis of Variance
Source DF Sum of Squares Mean Square F Value Pr>F
Model 2 39.29313 19.64656 1.68 0.1913
Error 119 1393.99196 11.71422
Corrected Total 121 1433.28509

Root MSE 3.42260 R-Square 0.0274
Dependent Mean 16.64672 Adj R-Sq 0.0111
Coeff Var 20.56023

Parameter Estimates
Variable DF Parameter Estimate Standard Error tValue Pr>|t|
Intercept 1 18.52905 1.22458 15.13 <.0001
AgeBeganSolids 1 -0.12087 0.06722 -1.80 0.0747
BreastfeedDuration 1 0.01263 0.01620 0.78 0.4371

Residuals vs Fitted Values

The REG Procedure

Model: MODEL1

Dependent Variable: ToddlerWtGain

Output Statistics
Obs Dependent Variable Predicted Value Residual
1 . 16.1117 .
2 15.9 16.0342 -0.1642
3 . 17.8038 .
4 18.6 16.4743 2.1357
5 16.7 17.4685 -0.7785
6 17.9 17.2268 0.6432
7 16.4 16.1117 0.2583
8 17.1 16.9182 0.1918
9 13.1 16.7956 -3.6656
10 14.4 16.6170 -2.2470
11 10.7 16.2633 -5.6033
12 14.5 16.7287 -2.2387
13 15.2 18.1937 -2.9737
14 . 15.9205 .
15 17.7 15.7491 1.9609
16 17.3 17.1292 0.1608
17 19.5 16.8389 2.6811
18 16.8 16.9885 -0.2085
19 15.3 16.8659 -1.6059
20 20.2 16.7252 3.5048
21 17.6 15.8375 1.7925
22 20.0 16.6566 3.3534
23 13.9 17.0786 -3.2186
24 15.7 16.9851 -1.2551
25 16.3 16.8622 -0.6122
26 22.8 16.3661 6.3839
27 15.3 15.6787 -0.4287
28 18.9 17.3477 1.5723
29 22.4 16.6583 5.6917
30 12.9 15.8792 -2.9392
31 15.4 16.5555 -1.1755
32 16.3 17.2268 -0.9168
33 17.2 14.0986 3.0714
34 18.9 16.7433 2.1467
35 22.2 16.4835 5.7065
36 . 17.6126 .
37 13.4 15.6842 -2.2542
38 18.3 17.3422 0.9078
39 14.2 17.1005 -2.8705
40 . . .
41 13.7 16.5016 -2.8116
42 14.2 15.8973 -1.7173
43 18.8 16.6457 2.1543
44 14.8 16.2599 -1.5099
45 15.8 16.7252 -0.8852
46 15.4 16.2056 -0.7856
47 15.4 16.3391 -0.9691
48 . 15.8700 .
49 19.0 16.5952 2.3648
50 14.6 16.7433 -2.1933
51 17.5 17.5621 -0.1021
52 . . .
53 16.4 16.6078 -0.1878
54 19.3 17.5621 1.7379
55 15.4 15.5183 -0.1083
56 14.1 16.8857 -2.8257
57 18.1 16.8478 1.2722
58 15.9 15.9079 -0.0579
59 23.0 16.4743 6.5157
60 23.6 17.2268 6.3632
61 16.3 17.1292 -0.8692
62 17.4 16.4996 0.8604
63 15.9 17.5874 -1.7374
64 13.8 16.7433 -2.9433
65 12.6 16.5105 -3.9205
66 . 16.2326 .
67 17.9 16.9851 0.9449
68 18.3 16.5952 1.7148
69 18.8 18.5509 0.2191
70 19.0 17.1329 1.8171
71 14.4 16.1117 -1.7117
72 . . .
73 16.8 16.8226 0.007449
74 . 16.6962 .
75 16.7 16.2599 0.4201
76 . 17.5621 .
77 18.0 16.5231 1.4369
78 17.7 16.4545 1.2255
79 . 15.9908 .
80 13.7 16.2599 -2.5599
81 14.6 16.8983 -2.3183
82 17.4 16.1496 1.2904
83 21.6 17.6505 3.9395
84 17.1 15.7996 1.3404
85 22.6 16.6331 5.9469
86 17.7 16.1117 1.6183
87 11.8 16.2599 -4.4299
88 15.3 16.4511 -1.1111
89 15.5 16.8369 -1.3769
90 18.9 16.5016 2.4384
91 . . .
92 15.1 16.2599 -1.1399
93 18.1 17.3060 0.8340
94 15.1 16.5952 -1.4752
95 18.3 16.8478 1.4622
96 20.3 16.5627 3.7273
97 . 16.5555 .
98 15.2 15.8826 -0.7226
99 12.6 17.2268 -4.6168
100 19.7 16.5016 3.1984
101 19.0 16.9851 2.0049
102 -8.1 16.1117 -24.2117
103 17.3 17.0786 0.1714
104 16.2 18.1937 -2.0037
105 . 17.4685 .
106 17.1 17.1094 -0.0494
107 . 16.6457 .
108 . 16.5952 .
109 19.5 16.6170 2.8430
110 15.2 16.7433 -1.5933
111 15.3 16.2093 -0.9093
112 23.8 16.2599 7.5501
113 19.0 16.6583 2.3717
114 19.9 16.9291 2.9309
115 14.1 16.9489 -2.8489
116 17.8 16.2599 1.5301
117 14.8 16.6006 -1.7906
118 21.9 16.3643 5.5657
119 . 16.8622 .
120 17.2 16.7433 0.4267
121 18.2 17.1131 1.0669
122 15.6 15.8809 -0.2609
123 20.4 16.8966 3.5034
124 . 16.4743 .
125 13.9 15.9188 -2.0188
126 13.1 17.1544 -4.0844
127 15.5 16.2599 -0.7299
128 18.9 16.8280 2.0820
129 18.4 16.2128 2.2172
130 15.2 16.6873 -1.5173
131 17.6 16.1622 1.3878
132 15.4 16.0035 -0.5635
133 13.1 16.5952 -3.4852
134 15.6 16.5248 -0.9348
135 14.4 16.7973 -2.3873
136 15.6 16.9506 -1.3106
137 17.2 16.7468 0.4332
138 18.5 17.2268 1.2732
139 17.8 16.8082 1.0318
140 13.4 16.7433 -3.3233
141 15.6 16.7181 -1.1381

Sum of Residuals 0
Sum of Squared Residuals 1393.99196
Predicted Residual SS (PRESS) 1465.07304

Residuals vs Fitted Values

The UNIVARIATE Procedure

Variable: resid (Residual)

Moments
N 122 Sum Weights 122
Mean 0 Sum Observations 0
Std Deviation 3.39420016 Variance 11.5205947
Skewness -2.7218523 Kurtosis 20.5842563
Uncorrected SS 1393.99196 Corrected SS 1393.99196
Coeff Variation . Std Error Mean 0.30729644

Basic Statistical Measures
Location Variability
Mean 0.00000 Std Deviation 3.39420
Median -0.07998 Variance 11.52059
Mode . Range 31.76183
Interquartile Range 3.34381

TestsforLocation:Mu0=0
Test Statistic p Value
Student's t t 0 Pr > |t| 1.0000
Sign M -2 Pr >= |M| 0.7861
Signed Rank S 76.5 Pr >= |S| 0.8460

Tests for Normality
Test Statistic p Value
Shapiro-Wilk W 0.797663 Pr < W <0.0001
Kolmogorov-Smirnov D 0.108514 Pr > D <0.0100
Cramer-von Mises W-Sq 0.349792 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 2.626085 Pr > A-Sq <0.0050

Quantiles(Definition5)
Level Quantile
100% Max 7.5501429
99% 6.5157074
95% 5.6916755
90% 3.3533882
75% Q3 1.7378962
50% Median -0.0799777
25% Q1 -1.6059093
10% -2.9391605
5% -3.6655726
1% -5.6032825
0% Min -24.2116889

Extreme Observations
Lowest Highest
Value Obs Value Obs
-24.21169 102 5.94694 85
-5.60328 11 6.36320 60
-4.61680 99 6.38394 26
-4.42986 87 6.51571 59
-4.08443 126 7.55014 112

Missing Values
Missing Value Count Percent Of
All Obs Missing Obs
. 19 13.48 100.00

Residuals vs Fitted Values

The UNIVARIATE Procedure

Residuals vs Fitted Values

The UNIVARIATE Procedure

Fitted Normal Distribution for resid (Residual)

Parameters for Normal Distribution
Parameter Symbol Estimate
Mean Mu 0
Std Dev Sigma 3.3942

Goodness-of-Fit Tests for Normal Distribution
Test Statistic p Value
Kolmogorov-Smirnov D 0.10851383 Pr > D <0.010
Cramer-von Mises W-Sq 0.34979195 Pr > W-Sq <0.005
Anderson-Darling A-Sq 2.62608524 Pr > A-Sq <0.005

Quantiles for Normal Distribution
Percent Quantile
Observed Estimated
1.0 -5.60328 -7.89609
5.0 -3.66557 -5.58296
10.0 -2.93916 -4.34984
25.0 -1.60591 -2.28935
50.0 -0.07998 0.00000
75.0 1.73790 2.28935
90.0 3.35339 4.34984
95.0 5.69168 5.58296
99.0 6.51571 7.89609

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!