Question: (2) Consider the function f : R* > R given by f(x1, $2, 23, 24) = (1 + x2 - sin(x] - 2:3), elm-23+24, 2x3

![f(x1, $2, 23, 24) = (1 + x2 - sin(x] - 2:3),](https://s3.amazonaws.com/si.experts.images/answers/2024/06/66650f0133b7d_00966650f0117e6f.jpg)
(2) Consider the function f : R* > R given by f(x1, $2, 23, 24) = (1 + x2 - sin(x] - 2:3), elm-23+24, 2x3 + tan($2 - 2;)). (a) Compute the matrix Def, where P = (0, 0, 0, 0). (b) Write down the linear approximation of f at the point P = (0, 0, 0, 0), and use this approximation to estimate the value f(0.1, -0.1, -0.1, 0.1). (b) Now consider the function g : R3 -> R given by g(x, y, z) = (sin(x - y), ycos(x2 - 22 -1)). We can compose the maps f and g to obtain a smooth function go f : R* -> R.". Use the chain rule to compute Dp (go f), where P = (0, 0, 0, 0)
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
