Question: 2. Determine the inverse Laplace transform of the function below. 9 (2s + 9)5 Click here to view the table of Laplace transforms. Click here

2. Determine the inverse Laplace transform of the2. Determine the inverse Laplace transform of the2. Determine the inverse Laplace transform of the
2. Determine the inverse Laplace transform of the function below. 9 (2s + 9)5 Click here to view the table of Laplace transforms. Click here to view the table of properties of Laplace transforms. 2- 1 - 9 ( 25 + 9)5 / 3: Table of Laplace Transforms f(t F(S) = 1{f)(s) 1 5: S >0 e at 1 2, S>0 n! to , n= 1,2,... b sin bt S cos bt 52 + 2 : 530 nI eaten , n = 1,2,... S - ajn + 1 : $>a b e asin bt (s - a)2 + b2 > > > a s - a e at cos bt (s - a)2 + 2 . S > a 4: Properties of Laplace Transforms {{f + g} = fff} + fig) ((cf) = cuff) for any constant c Leaf(t) (s) = {(f)(s - a) { {f} (s) = siff}(s) - f(0) f(f') ( 5 ) = 52 eff] (s) - sf(0 ) - f' ( 0 ) { {f()}(s) = s" eff)(s) -s" -f(0) - sn -2f'(0) - ... - f(n - 1) (0) I{if(1 ) ) ( s ) = ( - 1) 0 - ( 2 (f) (s ) ) dsn 2- 1( F 1 + F 2 ) = 2-' ( F 1 } + 2-1 ( F 2 } 2- 1( CF ) = Cy-1( F )3. Determine the inverse Laplace transform of the function below. 6s + 50 S + 8s + 52 Click here to view the table of Laplace transforms." Click here to view the table of properties of Laplace transforms. 2 - 1/ 5s + 50 54 + 85 + 52 6: Table of Laplace Transforms f(t) F(s) = 1{f)(s) 1 e at S-a: $>0 n! to , n = 1,2, ... gn+ 1 : 5>0 b sin bt 52 + 2: 5 0 S cos bt eatth, n = 1,2,... (s - a)n + 1 : $>a b e at sin bt (s - a)2 + 2 , $ > a s - a e at cos bt (s - a)2 + 2 > > > a 6: Properties of Laplace Transforms { {f + g} = (f) + fig) { {cf) = cf (f) for any constant c {{eatf(t)} (s) = {{f)(s - a) I (f'} (s) = SI(f)(s) - f(0 ) f(f') (s ) = s' eff)(s) - sf(0) - f' (0 ) e(f()} (s) = s" eff,(s) - sn-1f(0) - s"-2f'(0) - ... - f(n- 1)(0) { {t" f(1 ) ( s ) = ( - 1 ) n - dan ({ {)(s)) 2 - 1 ( F 1 + F 2 ) = 1- 1 ( F 1 ) + 2- ( F 2 } 1- ( CF ) = Cy-1{F }1. Determine the inverse Laplace transform of the function below. 9 $2 + 49 Click here to view the table of Laplace transforms. 1 Click here to view the table of properties of Laplace transforms.2 9 132 + 49 ) : Table of Laplace Transforms f(t) F(s) = 1{f)(s) 1 1 e at s- a: $>0 n! to , n = 1,2,. gn + 1: 5>0 b sin bt S cos bt +62:520 e atth, n = 1,2,.. S - a)n+ 1 : $>a b e at sin bt (s - a)2 + b2 > > > a 6- a e at cos bt (s - a)2 + 2 > > > a 2: Properties of Laplace Transforms fff + g) = {{f) + fig) {{cf) = cf {f) for any constant c the atf(1)} (s) = {{0)(s - a) * (f) (s) = SI (f)(s) - f(0 ) f (f') ( s ) = 52 elf, (s ) - sf ( 0 ) - f' (0 ) e(f()} (s) = s" eff)(s) - s- f(0) - s" -2f'(0) -... - f(0-1) (0) I(if(1 ) ( s ) = ( - 1 ) n - ( 2 (0 (5 ) ) dsn 2 - 1 ( F 1 + F 2 ) = 2 1 { F 1 } + 2- 1 ( F 2 } 1 {CF ) = Cy {F ]

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!