Question: 2. DUAL SIMPLEX METHOD. Carry out the development of the exercise and answer the questions related to it found in Socrative. A company seeks to

2. DUAL SIMPLEX METHOD. Carry out the development of the exercise and answer the questions related to it found in Socrative. A company seeks to develop a fertilizer that must contain a minimum of 100 units of an element 1, 25 units of an element 2 and 10 units of an element 3. To make the fertilizer, two products are mixed, A and B, whose cost is 10 and 15 dollars per ton. The content of elements 1, 2 and 3 in a ton of each product is shown in the following table: Element 1 Element 2 Element 3 Product A 2 0.3 0.2 Product B 1 0.6 0.2 The company seeks to determine the optimal mixture to make the fertilizer That allows you to minimize the cost of manufacturing it and meets the minimum content of each of the elements. To do this, he developed the following linear programming model: Variables: x1: tons of product A used to make the fertilizer. x2: tons of product B used to make the fertilizer. Z: Total cost generated in the preparation of the fertilizer. Min Z = 10x, + 15x2 Subject to: 2x1 + x2 2 100 0.3x1 + 0.6x2> 25 0.20x, + 0.2x2 2 10 X1, X2 2 0 Solve the problem using the Simplex Dual Method to help the company to determine how many tons of products A and B you need to purchase to minimize your fertilizer manufacturing costs. The solution must show the complete development: tables, marking of input and output variables, optimality criterion and optimal solution. The interpretation of the result obtained must also be added. 2. DUAL SIMPLEX METHOD. Carry out the development
2. MTODO SIMPLEX DUAL. Realizar el desarrollo del ejercicio y responder las preguntas relacionadas con el mismo que se encuentran en Socrative. Una compaa busca desarrollar un fertilizante que debe contener un mnimo de 100 unidades de un elemento 1, 25 unidades de un elemento 2 y 10 unidades de un elemento 3. Para elaborar el fertilizante se mezclan dos productos, A y B, cuyo costo es de 10 y 15 dlares por tonelada. El contenido de los elementos 1, 2 y 3 en una tonelada de cada producto se muestra en la siguiente tabla: Elemento 1 Elemento 2 Elemento 3 Producto A 2 0.3 0.2 Producto B 1 0.6 0.2 La compaia busca determinar la mezcla optima para elaborar el fertilizante que le permita minimizar el costo de fabricacin del mismo y cumpla con los contenidos minimos de cada uno de los elementos. Para ello desarroll el siguiente modelo de programacin lineal: Variables: X: toneladas del producto a que se utilizan para fabricar el fertilizante. xz: toneladas del producto B que se utilizan para fabricar el fertilizante. Z: Costo total generado en la elaboracin del fertilizante. Min 2 = 10x2 +15x2 Sujeto a: 2x + x, 2 100 0.3x+ 0.6x2 2 25 0.20x, + 0.2x, 210 X1, X3 20 Resuelva el problema por medio del Mtodo Simplex Dual para ayudar a la compaa a determinar cuntas toneladas de los productos A y B requiere adquirir para minimizar sus costos de elaboracin de fertilizante. La solucin deber mostrar el desarrollo completo: tablas, sealamiento de variables de entrada y salida, criterio de optimalidad y solucin ptima. Se deber adems agregar la interpretacin del resultado obtenido

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related General Management Questions!