Question: 2. Evaluate the limit if it exists or explain why it does not exist. (Do not use L'hospital rules!) (a) silim _{x ightarrow-1} frac{2-sqrt{f(x)}}{x+1}$ if

 2. Evaluate the limit if it exists or explain why it

2. Evaluate the limit if it exists or explain why it does not exist. (Do not use L'hospital rules!) (a) silim _{x ightarrow-1} \frac{2-\sqrt{f(x)}}{x+1}$ if $f(-1)=4, f(x)>0$ for all $x$ and $f^{\prime) (-1)=\pi$. (b) $\lim _{x ightarrow \infty} \frac{\ln \left(1+\sin ^{2} x ight)}{\arctan X+e^{x}}$ (c) $\lim _{x ightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^{3}}$ (d) $\lim _{x ightarrow \infty} \frac{x^{3}+\sqrt{x^{6}+2 x^{5}+1}}{x^{3}+2 X^{2}+X+1}$ (e) $\lim _{x ightarrow \infty} \frac{\cos (x \sin x)}{x^{2}}$ (f) $\lim _{x ightarrow 0^{+}} \frac{(\tan \sqrt{x} \sqrt{2 x+1}}{x}$ (g) $\lim _{x ightarrow \infty} \sqrt{x+\sqrt{x}}-\sqrt{x} $ (h) $\lim _{x ightarrow \infty}\left[\ln \left(x^{2} +1 ight)-\In \left(x^{2}-1 ight) ight]$ CS.JG. 118

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!