Question: 2. [Python question: submit a print out of your answer] We have shown that the harmonic series L=1 diverges because its sequence of partial sums
2. [Python question: submit a print out of your answer] We have shown that the harmonic series L=1 diverges because its sequence of partial sums Sk = n=1 n is unbounded above. Hence, given any M R, there exists some k N such that 8% > M. By experimenting with Python, find the smallest k e N such that (a) Sk > 4, (b) Sk > 8, (c) Sk > 12, (d) sk > 16. Hints: You don't need to load any packages for this one. You will find the Python command while useful. Also, note that, having found the answer to part (a), that is, the smallest k such that Ek=11 > 4, you don't need to start back at n = = 1 when computing the partial sums to answer part (b): you can use the fact that
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
