Question: 3. Simplify. (a) cos A + COS( TT - X) - COS( 7 + x) - cos(-x) (b) tan & + tan( T - x)

3. Simplify. (a) cos A + COS( TT - X) - COS( 7 +
3. Simplify. (a) cos A + COS( TT - X) - COS( 7 + x) - cos(-x) (b) tan & + tan( T - x) + cot(" - x) - lan(27. - x) (c) sin( 7 + x) + cos( -.* ) + ton ( + x ) + can ( 7 - x) + x ) - cos ( " - x ) + sin ( " - x) (e) sin( - x) + sin(T - x) + sin( 7 - x) + sin(2T - x) 4. Find the cosecant. secant, and cotangent of each of the following. Express your answers in terms of cosecant, secant, or cotangent of x. 3TT (a) TT - .x (b) + .x (C) TI + X ( d ) 2 + x 5. Simplify. (a) sin(x - T) (b) cos( x - - (c) tan( - - T) 6. Evaluate. 3TT (a) sec + (b) esc 2 (c) cot TT + (d) sec (e) csc 37 (f) cot - IT + !) 2 4 7. Simplify COS( 7 + x)cos + x) sin 2 (a) COS( TI ~ X) sec( it + x) 3 TT sin x - tan( x 2 (b) + COS( 7 - X) tan( 7 + x) 8. If b + c = 1, prove that 2(1 - sin b sin c) = cos b + cost c. 9. If A, B, and C are angles in a triangle prove that sin B = sin(A + C)

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!