Question: 4 . 7 . When we derived the integral equations for a flat - plate boundary layer, the outer boundary of our control volume was

4.7. When we derived the integral equations for a flat-plate boundary layer, the outer boundary of our control volume was a streamline outside the boundary layer (see Fig. 4.17). Let us now apply the integral equations to a rectangular control volume to calculate the sectional drag coefficient for incompressible flow past a flat plate of length L. Thus, as shown in Fig. P4.7, the outer boundary is a line parallel to the wall and outside the boundary layer at all x stations. Owing to the growth of the boundary layer, fluid flows through the upper boundary with a velocity ve which is a function of x . How does the resultant expression compare with equation (4.70)?
Figure P4.7
4 . 7 . When we derived the integral equations

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mechanical Engineering Questions!