Question: 7 . A copper cube 1 0 . 0 cm on a side is heated to 1 0 0 C . The block is placed

7. A copper cube 10.0 cm on a side is heated to 100 C. The block is placed
on a surface that is kept at 0 C. The sides of the block are insulated, so
the normal derivatives on the sides are zero. Heat flows from the top of
the block to the air governed by the gradient uz =
10C/m. Determine
the temperature of the block at its center after 1.0 minutes. Consider the
following hints:
a. This is a heat conduction problem with nonhomogeneous boundary
conditions. Assume u(x, y, z, t)= v(x, y, z, t)+ f(z), where v(x, y, z, t)
satisfies homogeneous boundary conditions. Find v(x, y, z, t) and f(z).
b. In order to get a numerical value for the temperature, you will need
the thermal diffusivity, which is given by k = K
c
p , where K is the ther
mal conductivity, is the density, and cp is the specific heat capacity.
Look up any needed properties of copper.

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mechanical Engineering Questions!