Question: 7. Given f(x) = x 2 x 2 + 4 , f0 (x) = 8x (x 2 + 4)2 , f00(x) = 8(3x 2 +
7. Given f(x) = x 2 x 2 + 4 , f0 (x) = 8x (x 2 + 4)2 , f00(x) = 8(3x 2 + 4) (x 2 + 4)3 (a) State the domain of f(x) i.e Domf(x) = (b) Find the horizontal asymptotes of f(x) (c) State the vertical asymptotes of f and explore the behaviour around the asymptotes. (d) Find the critical points of f (e) On what interval is f increasing? decreasing? (f) Does f have a max or min value? where does it occur? (g) Does f have any inflection points? where do they occur? (h) On what interval is f concave upward? concave downward? (i) sketch the graph of f
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
