Question: A microcomputer manufacturer has developed a regression model relating his sales (Y in $10,000s) with three independent variables. The three independent variables are price per
A microcomputer manufacturer has developed a regression model relating his sales (Y in $10,000s) with three independent variables. The three independent variables are price per unit (Price in $100s), advertising (ADV in $1,000s) and the number of product lines (Lines). Part of the regression results is shown below.




Degrees of Table 4 Freedom to. 100 to.050 to.025 to.010 to.005 Critical Values 3.078 6.314 12.706 31.821 63.657 of the 1.886 2.920 4.303 6.965 9.925 Student t 1.638 2.353 3.182 4.541 5.841 Distribution 1.533 2. 132 NODAWN 2.776 3.747 4.604 1.476 2.015 2.571 3.365 4.032 1.440 1.943 2.447 3.143 3.707 1.415 1.895 + R 2.365 2.998 3.499 8 1.397 1.860 2.306 2.896 3.355 9 1.383 1.833 2.262 2.821 3.250 0 ta 10 1.372 1.812 2.228 2.764 3.169 11 1.363 1.796 2.201 2.718 3.106 12 1.356 1.782 2.179 2.681 13 3.055 1.350 1.771 2.160 2.650 14 3.012 1.345 1.761 15 2.145 2.624 2.977 1.341 1.753 2.131 2.602 2.947 16 1.337 1.746 2.120 2.583 2.921 17 1.333 1.740 2.110 2.567 2.898 18 1.330 1.734 2.101 2.552 2.878 19 1.328 1.729 2.093 2.539 2.861 20 1.325 1.725 2.086 2.528 2.845 21 1.323 1.721 2.080 2.518 22 2.831 1.321 1.717 2.074 2.508 23 2.819 1.319 1.714 2.069 2.500 24 2.807 1.318 1.711 2.064 2.492 2.797 25 1.316 1.708 2.060 2.485 2.787 26 1.315 1.706 2.056 2.479 27 2.779 1.314 1.703 2.052 2.473 28 2.771 1.313 1.701 2.048 2.467 2.763 29 1.311 1.699 2.045 2.462 2.756 30 1.310 1.697 2.042 2.457 35 2.750 1.306 1.690 2.030 2.438 2.724 40 1.303 1.684 2.021 2.423 45 2.704 1.301 1.679 2.014 2.412 2.690 50 1.299 1.676 2.009 2.403 2.678 55 1.297 1.673 2.004 2.396 60 2.668 1.296 1.671 2.000 2.390 2.660 65 1.295 1.669 1.997 2.385 2.654 70 1.294 1.667 1.994 2.381 2.648 75 1.293 1.665 1.992 2.377 2.643 80 1.292 1.664 1.990 2.374 85 2.639 1.292 1.663 1.988 2.371 2.635 90 1.291 1.662 1.987 2.368 2.632 95 1.291 1.661 1.985 2.366 2.629 100 1.290 1.660 1.984 2.364 2.626 110 1.289 1.659 1.982 2.361 2.621 120 1.289 1.658 1.980 2.358 130 2.617 1.288 1.657 1.978 2.355 2.614 140 1.288 1.656 1.977 2.353 2.611 150 1.287 1.655 1.976 2.351 2.609 160 1.287 1.654 1.975 2.350 2.607 170 1.287 1.654 1.974 2.348 2.605 180 1.286 1.653 1.973 2.347 2.603 190 1.286 1.653 1.973 2.346 2.602 200 1.286 1.653 1.972 2.345 2.601 00 1.282 1.645 1.960 2.326 2.576\f\fANOVA of SS MS F Significance F Regression 2708.61 902.87 4.45 0.0215 Residual 13 2840.51 202.89 Total 17 5549.12 Coefficient Standard Error t Stat P-value Intercept 1.02 22.87 0.0446 0.4825 Price -0.15 0.14 -1.0801 0. 1492 ADV 0.89 0.29 3.06612 0.0042 Lines -0.15 1.53 -0.0954 0.4627
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
