Question: (a) Using d'Alembert's Ratio Test, determine convergence or divergence of the following series: (n + 1)1000 (n 1)! n=1 (7 Marks) (b) Using Cauchy's

(a) Using d'Alembert's Ratio Test, determine convergence or divergence of the following 

(a) Using d'Alembert's Ratio Test, determine convergence or divergence of the following series: (n + 1)1000 (n 1)! n=1 (7 Marks) (b) Using Cauchy's Root Test, determine convergence or divergence of the following series: -5n + 8n3 4n3 + 10 n=1 (7 Marks) (c) Using Leibniz's Alternating Series Test, determine convergence or divergence of the following series: log10 n (-e)" n=1

Step by Step Solution

3.52 Rating (155 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

Lets address each part of the question stepbystep a Using dAlemberts Ratio Test The given series is ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!