Question: begin{tabular}{|c|c|c|c|c|c|c|c|c|} hline multirow[t]{3}{*}{ L } & M & N & 0 & P & Q & R & s & T hline & mean
![\begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hline \multirow[t]{3}{*}{ L } & M & N & 0](https://s3.amazonaws.com/si.experts.images/answers/2024/07/66aa3faf136fd_45466aa3faea507e.jpg)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hline \multirow[t]{3}{*}{ L } & M & N & 0 & P & Q & R & s & T \\ \hline & mean & 0.0320629 & 0.047069 & 0.01003632 & & & & \\ \hline & std & 0.0773564 & 0.0877026 & 0.01664298 & & & & \\ \hline std & \multicolumn{2}{|l|}{ Correlation Matrix } & & & & & & \\ \hline 0.077356375 & & 1 & 0.9051951 & -0.2917505 & & & & \\ \hline 0.087702564 & & 0.9051951 & 1 & -0.2101361 & & & & \\ \hline 0.016642979 & & -0.29175 & -0.210136 & 1 & & & & \\ \hline \multicolumn{2}{|c|}{ Portfolio Weights } & 0.3000 & 0.2000 & 0.5000 & & & & \\ \hline & Covariance Matrix & SPY & QQQ & AGG & \multicolumn{2}{|c|}{ Weighted cov Matrix } & & \\ \hline 0.3000 & SPY & 0.005984 & 0.0061412 & -0.0003756 & & 0.0005386 & 0.00036847 & 5.6342E05 \\ \hline 0.2000 & QQQ & 0.0061412 & 0.0076917 & -0.0003067 & & 0.0003685 & 0.00030767 & 3.0672E05 \\ \hline 0.5000 & AGG & -0.000376 & -0.000307 & 0.00027699 & & 5.63E05 & 3.06721E05 & 6.9247E05 \\ \hline \end{tabular} 7 Assume that short sales are not allowed., use the solver, incorporate this restriction, and fill in the weights of the least risk portfolio under the ETF headings in the yellow in this question. Based on these weights and the data in this sheet, which is true? 1 This least risk portfolio allocates less than 10% to stocks 2 This least risk portfolio avoids investing in QQQ 3 This least risk portfolio practically allocates the same weight to bonds as the portfolio in question 1 does 4 This least risk portfolio provides a worse mean and a worse std, compared to the portfolio in question 1 5 all of the above are true
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
