Question: Binary search trees have their best performance when they are balanced, which means that at each node, n, the height of the left subtree of
Binary search trees have their best performance when they are balanced, which
means that at each node, n, the height of the left subtree of n is within one of the
height of the right subtree of n. Write a function (and a test program) which takes a
sorted list of entries and produces a balanced binary search tree. Using the following files
_____________________________________________________________________________________
// FILE: bintree.h (part of the namespace main_savitch_10)
// PROVIDES: A template class for a node in a binary tree and functions for
// manipulating binary trees. The template parameter is the type of data in
// each node.
//
// TYPEDEF for the binary_tree_node
// Each node of the tree contains a piece of data and pointers to its
// children. The type of the data (binary_tree_node
// the Item type from the template parameter. The type may be any of the C++
// built-in types (int, char, etc.), or a class with a default constructor,
// and an assignment operator.
//
// CONSTRUCTOR for the binary_tree_node
// binary_tree_node(
// const item& init_data = Item( ),
// binary_tree_node
// binary_tree_node
// )
// Postcondition: The new node has its data equal to init_data,
// and it's child pointers equal to init_left and init_right.
//
// MEMBER FUNCTIONS for the binary_tree_node
// const item& data( ) const <----- const version
// and
// Item& data( ) <----- non-const version
// Postcondition: The return value is a reference to the data from
// this binary_tree_node.
//
// const binary_tree_node* left( ) const <----- const version
// and
// binary_tree_node* left( ) <----- non-const version
// and
// const binary_tree_node* right( ) const <----- const version
// and
// binary_tree_node* right( ) <----- non-const version
// Postcondition: The return value is a pointer to the left or right child
// (which will be NULL if there is no child).
//
// void set_data(const Item& new_data)
// Postcondition: The binary_tree_node now contains the specified new data.
//
// void set_left(binary_tree_node* new_link)
// and
// void set_right(binary_tree_node* new_link)
// Postcondition: The binary_tree_node now contains the specified new link
// to a child.
//
// bool is_leaf( )
// Postcondition: The return value is true if the node is a leaf;
// otherwise the return value is false.
//
// NON-MEMBER FUNCTIONS to maniplulate binary tree nodes:
// tempate
// void inorder(Process f, BTNode* node_ptr)
// Precondition: node_ptr is a pointer to a node in a binary tree (or
// node_ptr may be NULL to indicate the empty tree).
// Postcondition: If node_ptr is non-NULL, then the function f has been
// applied to the contents of *node_ptr and all of its descendants, using
// an in-order traversal.
// Note: BTNode may be a binary_tree_node or a const binary tree node.
// Process is the type of a function f that may be called with a single
// Item argument (using the Item type from the node).
//
// tempate
// void postorder(Process f, BTNode* node_ptr)
// Same as the in-order function, except with a post-order traversal.
//
// tempate
// void preorder(Process f, BTNode* node_ptr)
// Same as the in-order function, except with a pre-order traversal.
//
// template
// void print(const binary_tree_node
// Precondition: node_ptr is a pointer to a node in a binary tree (or
// node_ptr may be NULL to indicate the empty tree). If the pointer is
// not NULL, then depth is the depth of the node pointed to by node_ptr.
// Postcondition: If node_ptr is non-NULL, then the contents of *node_ptr
// and all its descendants have been written to cout with the << operator,
// using a backward in-order traversal. Each node is indented four times
// its depth.
//
// template
// void tree_clear(binary_tree_node
// Precondition: root_ptr is the root pointer of a binary tree (which may
// be NULL for the empty tree).
// Postcondition: All nodes at the root or below have been returned to the
// heap, and root_ptr has been set to NULL.
//
// template
// binary_tree_node
// Precondition: root_ptr is the root pointer of a binary tree (which may
// be NULL for the empty tree).
// Postcondition: A copy of the binary tree has been made, and the return
// value is a pointer to the root of this copy.
//
// template
// size_t tree_size(const binary_tree_node
// Precondition: node_ptr is a pointer to a node in a binary tree (or
// node_ptr may be NULL to indicate the empty tree).
// Postcondition: The return value is the number of nodes in the tree.
#ifndef BINTREE_H
#define BINTREE_H
#include
namespace main_savitch_10
{
template
class binary_tree_node
{
public:
// TYPEDEF
typedef Item value_type;
// CONSTRUCTOR
binary_tree_node(
const Item& init_data = Item( ),
binary_tree_node* init_left = NULL,
binary_tree_node* init_right = NULL
)
{
data_field = init_data;
left_field = init_left;
right_field = init_right;
}
// MODIFICATION MEMBER FUNCTIONS
Item& data( ) { return data_field; }
binary_tree_node* left( ) { return left_field; }
binary_tree_node* right( ) { return right_field; }
void set_data(const Item& new_data) { data_field = new_data; }
void set_left(binary_tree_node* new_left) { left_field = new_left; }
void set_right(binary_tree_node* new_right) { right_field = new_right; }
// CONST MEMBER FUNCTIONS
const Item& data( ) const { return data_field; }
const binary_tree_node* left( ) const { return left_field; }
const binary_tree_node* right( ) const { return right_field; }
bool is_leaf( ) const
{ return (left_field == NULL) && (right_field == NULL); }
private:
Item data_field;
binary_tree_node *left_field;
binary_tree_node *right_field;
};
// NON-MEMBER FUNCTIONS for the binary_tree_node
template
void inorder(Process f, BTNode* node_ptr);
template
void preorder(Process f, BTNode* node_ptr);
template
void postorder(Process f, BTNode* node_ptr);
template
void print(binary_tree_node
template
void tree_clear(binary_tree_node
template
binary_tree_node
template
std::size_t tree_size(const binary_tree_node
}
#include "bintree.template"
#endif
-------------------------------------------------------------------------------------------------------------------------------------------------------
// FILE: bintree.template
// IMPLEMENTS: The binary_tree node class (see bintree.h for documentation).
#include
#include
#include
#include
namespace main_savitch_10
{
template
void inorder(Process f, BTNode* node_ptr)
// Library facilities used: cstdlib
{
if (node_ptr != NULL)
{
inorder(f, node_ptr->left( ));
f( node_ptr->data( ) );
inorder(f, node_ptr->right( ));
}
}
template
void postorder(Process f, BTNode* node_ptr)
// Library facilities used: cstdlib
{
if (node_ptr != NULL)
{
postorder(f, node_ptr->left( ));
postorder(f, node_ptr->right( ));
f(node_ptr->data( ));
}
}
template
void preorder(Process f, BTNode* node_ptr)
// Library facilities used: cstdlib
{
if (node_ptr != NULL)
{
f( node_ptr->data( ) );
preorder(f, node_ptr->left( ));
preorder(f, node_ptr->right( ));
}
}
template
void print(binary_tree_node
// Library facilities used: iomanip, iostream, stdlib
{
if (node_ptr != NULL)
{
print(node_ptr->right( ), depth+1);
std::cout << std::setw(4*depth) << ""; // Indent 4*depth spaces.
std::cout << node_ptr->data( ) << std::endl;
print(node_ptr->left( ), depth+1);
}
}
template
void tree_clear(binary_tree_node
// Library facilities used: cstdlib
{
binary_tree_node
if (root_ptr != NULL)
{
child = root_ptr->left( );
tree_clear( child );
child = root_ptr->right( );
tree_clear( child );
delete root_ptr;
root_ptr = NULL;
}
}
template
binary_tree_node
// Library facilities used: cstdlib
{
binary_tree_node
binary_tree_node
if (root_ptr == NULL)
return NULL;
else
{
l_ptr = tree_copy( root_ptr->left( ) );
r_ptr = tree_copy( root_ptr->right( ) );
return
new binary_tree_node
}
}
template
size_t tree_size(const binary_tree_node
// Library facilities used: cstdlib
{
if (node_ptr == NULL)
return 0;
else
return
1 + tree_size(node_ptr->left( )) + tree_size(node_ptr->right( ));
}
}
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
