Question: BUSI 652 - Predictive Analytics Individual Assignment II The provided dataset Franchises Dataset contains data collected from different 100 franchises. The data contains the net

BUSI 652 - Predictive Analytics Individual Assignment II The provided dataset "Franchises Dataset" contains data collected from different 100 franchises. The data contains the net profit (million $) for each franchise, the counter sales (million $), the drive-through sales (million $), the number of customers visiting the business daily, the type of the franchise, and the location of the franchise. Address the following questions: a) Develop a decision tree model for the net profit (Here's a sample DT model). Assess the accuracy of the model (Here's a reference link). b) Simulate the decision tree and visualize and interprete the impact of the descriptive features as a root node. c) Develop a Random Forest (RF) prediction model for the net profit. d) Rationalize the selected structure of the model. e) Simulate the model parameters and visualize and interprete the impact of the descriptive features. f) What is the forecast of the net profit, if the counter sales are 500,000 $, drive-through sales are 700,000$, and the franchise is a pizza store located in Richmond, using both models (Decision Tree and Random Forest). Comment on the forecasted value. g) What are the roles of the "max_feature" and the "n_estimators" parameters in the random forest. h) What are the assumptions and limitations of the models? Data Analysis and Visualization Tools: It is recommended to use Python for this assignment.

Net Profit Counter Sales Drive-through Sales number of customers Business Type Location
2 8.4 7.7 101 Caf Vancouver
1.3 3.3 4.5 59 Caf Vancouver
1.2 5.8 8.4 103 Pizza Store Richmond
2.4 10 7.8 106 Burger store Richmond
0.7 4.7 2.4 80 Caf Richmond
1.3 7.7 4.8 108 Caf Richmond
1.1 4.5 2.5 81 Caf Vancouver
2.3 8.6 3.4 139 Burger store Vancouver
0.9 5.9 2 107 Caf Vancouver
1.6 6.3 4.1 84 Burger store Vancouver
2 8.4 7.7 100 Caf Vancouver
1.3 3.3 4.5 104 Caf Vancouver
1.7 5.8 8.4 130 Caf Vancouver
1.4 10 7.8 138 Pizza Store Vancouver
1.2 4.7 2.4 64 Burger store Vancouver
1.8 7.7 4.8 79 Burger store Vancouver
1.6 4.5 2.5 123 Burger store Vancouver
1.8 8.6 3.4 102 Caf Vancouver
1.4 5.9 2 115 Burger store Vancouver
1.1 6.3 4.1 83 Caf Vancouver
1.5 8.4 7.7 80 Pizza Store Vancouver
1.3 3.3 4.5 143 Caf Vancouver
1.2 5.8 8.4 134 Pizza Store Vancouver
2.4 10 7.8 139 Burger store Vancouver
1.2 4.7 2.4 53 Burger store Vancouver
1.3 7.7 4.8 134 Caf Vancouver
1.1 4.5 2.5 117 Caf Vancouver
1.3 8.6 3.4 61 Pizza Store Vancouver
0.9 5.9 2 130 Caf Vancouver
1.6 6.3 4.1 101 Burger store Vancouver
2 8.4 7.7 138 Caf Vancouver
0.8 3.3 4.5 124 Pizza Store Vancouver
2.2 5.8 8.4 54 Burger store Vancouver
2.4 10 7.8 76 Burger store Vancouver
1.2 4.7 2.4 119 Burger store Vancouver
0.8 7.7 4.8 72 Pizza Store Vancouver
1.6 4.5 2.5 49 Burger store Vancouver
1.8 8.6 3.4 93 Caf Vancouver
0.9 5.9 2 73 Caf Vancouver
1.6 6.3 4.1 92 Burger store Vancouver
2 8.4 7.7 119 Caf Vancouver
0.8 3.3 4.5 102 Pizza Store Vancouver
1.2 5.8 8.4 103 Pizza Store Vancouver
1.9 10 7.8 90 Caf Vancouver
0.7 4.7 2.4 142 Caf Vancouver
0.8 7.7 4.8 110 Pizza Store Vancouver
0.6 4.5 2.5 92 Pizza Store Vancouver
2.3 8.6 3.4 122 Burger store Vancouver
0.9 5.9 2 136 Caf Vancouver
1.6 6.3 4.1 124 Burger store Vancouver
2 8.4 7.7 75 Caf Vancouver
1.3 3.3 4.5 116 Caf Vancouver
1.2 5.8 8.4 93 Pizza Store Vancouver
2.4 10 7.8 94 Burger store Vancouver
0.7 4.7 2.4 135 Caf Vancouver
1.8 7.7 4.8 86 Burger store Vancouver
0.6 4.5 2.5 87 Pizza Store Vancouver
2.3 8.6 3.4 57 Burger store Vancouver
0.4 5.9 2 130 Pizza Store Vancouver
1.1 6.3 4.1 119 Caf Vancouver
2.5 8.4 7.7 93 Burger store Vancouver
1.8 3.3 4.5 96 Burger store Vancouver
2.2 5.8 8.4 97 Burger store Vancouver
2.4 10 7.8 55 Burger store Vancouver
1.2 4.7 2.4 97 Burger store Vancouver
0.8 7.7 4.8 108 Pizza Store Vancouver
1.1 4.5 2.5 111 Caf Vancouver
1.3 8.6 3.4 124 Pizza Store Vancouver
0.9 5.9 2 89 Caf Vancouver
0.6 6.3 4.1 128 Pizza Store Vancouver
2.5 8.4 7.7 131 Burger store Vancouver
1.3 3.3 4.5 72 Caf Vancouver
2.2 5.8 8.4 125 Burger store Vancouver
1.9 10 7.8 131 Caf Vancouver
0.2 4.7 2.4 104 Pizza Store Vancouver
1.8 7.7 4.8 109 Burger store Vancouver
1.6 4.5 2.5 46 Burger store Vancouver
2.3 8.6 3.4 66 Burger store Vancouver
1.4 5.9 2 67 Burger store Vancouver
0.6 6.3 4.1 46 Pizza Store Vancouver
1.7 8.4 7.7 99 Pizza Store Vancouver
1.8 3.3 4.5 131 Burger store Vancouver
2.6 5.8 8.4 141 Burger store Vancouver
1.4 10 7.8 90 Pizza Store Vancouver
0.2 4.7 2.4 92 Pizza Store Vancouver
1 7.7 4.8 71 Pizza Store Vancouver
0.6 4.5 2.5 129 Pizza Store Vancouver
2.3 8.6 3.4 107 Burger store Vancouver
1.6 5.9 2 64 Caf Vancouver
0.6 6.3 4.1 96 Pizza Store Vancouver
2.5 8.4 7.7 56 Burger store Vancouver
1.6 3.3 4.5 115 Burger store Vancouver
1.2 5.8 8.3 83 Pizza Store Vancouver
1.9 9.8 7.8 94 Caf Vancouver
1.2 4.7 2.4 62 Burger store Vancouver
1.8 7.7 4.8 104 Burger store Vancouver
0.6 4.5 2.5 80 Pizza Store Vancouver
1.3 9.1 3.4 129 Pizza Store Vancouver
1 5.9 2.2 85 Caf Vancouver
1.8 6.3 4.2 133 Burger store Vancouver

With coding in python

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

Step 1 Load and Explore the Dataset We start by importing the necessary libraries and loading the dataset into Python python import pandas as pd Load the datasetdata pdreadcsvFranchisesDatasetcsv Repl... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!