Question: Calculate and interpret the linear relationship between companies using the correlation coefficient. Here, you should calculate the correlation between pairs of companies. use the following
Calculate and interpret the linear relationship between companies using the correlation coefficient. Here, you should calculate the correlation between pairs of companies. use the following companies: verizon vs AT&T, verizon vs T-mobile, etc. I need to include the section of your R code that allows me to perform the computation.
code example
#####1. Install the Packages if necessary#### if(!require("tidyverse")) install.packages("tidyverse") if(!require("tidyquant")) install.packages("tidyquant") if(!require("lubridate")) install.packages("lubridate") if(!require("PerformanceAnalytics")) install.packages("PerformanceAnalytics") if(!require("openxlsx")) install.packages("openxlsx")
#####2. Load the Packages#### library(tidyverse) library(tidyquant) library(lubridate) library(PerformanceAnalytics) library(openxlsx)
#####3. Data Wrangling####
######3.1.Asset Prices (Stocks) ######## Daily_Price <- c("NFLX","AMZN","AAPL") %>% tq_get(get = "stock.prices", from = "2018-01-01", to = "2023-06-30")
######3.2.Asset Returns (Stocks) ######## Daily_Ret <- c("NFLX","AMZN","AAPL") %>% tq_get(get = "stock.prices", from = "2018-01-01", to = "2023-06-30") %>% group_by(symbol) %>% tq_transmute(select = adjusted, mutate_fun = periodReturn, period = "daily", col_rename = "dRet")
Monthly_Ret <- c("NFLX","AMZN","AAPL") %>% tq_get(get = "stock.prices", from = "2018-01-01", to = "2023-06-30") %>% group_by(symbol) %>% tq_transmute(select = adjusted, mutate_fun = periodReturn, period = "monthly", col_rename = "mRet")
######3.3.Baseline Returns (Portfolio) ######## Monthly_Ret_Port <- "XLK" %>% tq_get(get = "stock.prices", from = "2018-01-01", to = "2023-06-30") %>% tq_transmute(select = adjusted, mutate_fun = periodReturn, period = "monthly", col_rename = "Rb")
######3.4.Join (Merge) ########
Monthly_Ret_Join <- left_join(Monthly_Ret,Monthly_Ret_Port,by="date")
######3.5.Reshape ########
Daily_Ret_Wide <- pivot_wider(Daily_Ret,names_from = symbol, values_from = dRet)%>% mutate(Period = if_else(date<=ymd("2019-12-31"),"Pre-Covid","Post-Covid"))
Monthly_Ret_Wide <- pivot_wider(Monthly_Ret,names_from = symbol, values_from = mRet) %>% left_join(.,Monthly_Ret_Port,by="date")
Monthly_Ret_Wide_TS <- read.zoo(Monthly_Ret_Wide, format = "%Y-%m-%d")
#####4. Analysis####
######4.1.Tables####
Table_summary <- table.Stats(Monthly_Ret_Wide_TS) %>% tibble::rownames_to_column(.,"Statistic")
Table_var <- table.Variability(Monthly_Ret_Wide_TS) %>% tibble::rownames_to_column(.,"Statistic")
Table_semi <- SemiSD(Monthly_Ret_Wide_TS, method = "full") %>% as_tibble(.) %>% mutate(Statistic="Semi-Deviation") %>% dplyr::select(Statistic,everything())
Table_semi2 <- DownsideDeviation(Monthly_Ret_Wide_TS, method = "full") %>% as_tibble(.) %>% mutate(Statistic="Downside-Deviation (MAR=0%)") %>% dplyr::select(Statistic,everything())
Table_summary2 <- table.AnnualizedReturns(Monthly_Ret_Wide_TS) %>% tibble::rownames_to_column(.,"Statistic")
Table_cor <- Monthly_Ret_Join %>% group_by(symbol) %>% summarise(Num_of_Months=n(), mRet_Mean=mean(mRet, na.rm= TRUE), mRet_SD=sd(mRet, na.rm= TRUE), Rb_SD=sd(Rb, na.rm= TRUE), Cov_mRet_Rb=cov(x=mRet,y=Rb, use="pairwise.complete.obs"), Cor_mRet_Rb=cor(x=mRet,y=Rb, use="pairwise.complete.obs"), Cor_mRet_Rb2=Cov_mRet_Rb/(mRet_SD*Rb_SD))
######4.2.Graphs####
chart.Boxplot(Monthly_Ret_Wide_TS)
chart.RiskReturnScatter(Monthly_Ret_Wide_TS)
chart.SnailTrail(Monthly_Ret_Wide_TS, legend.loc = "topleft")
#####5.Export & Communicate####
######5.1.Tables####
wb <- createWorkbook()
addWorksheet(wb,"Daily_Prices") writeData(wb, sheet = "Daily_Prices", x = Daily_Price)
addWorksheet(wb,"Daily_Returns") writeData(wb, sheet = "Daily_Returns", x = Daily_Ret_Wide)
addWorksheet(wb,"Monthly_Returns") writeData(wb, sheet = "Monthly_Returns", x = Monthly_Ret_Wide)
addWorksheet(wb,"T1_summary") writeData(wb, sheet = "T1_summary", x = Table_summary)
addWorksheet(wb,"T2_variability") writeData(wb, sheet = "T2_variability", x = Table_var)
addWorksheet(wb,"T3_semi") writeData(wb, sheet = "T3_semi", x = Table_semi)
addWorksheet(wb,"T4_semi2") writeData(wb, sheet = "T4_semi2", x = Table_semi2)
addWorksheet(wb,"T5_summary2") writeData(wb, sheet = "T5_summary2", x = Table_summary2)
saveWorkbook(wb, "FING6702_Mod6_R_Tables.xlsx", overwrite = TRUE)
remove(wb)
######5.2.Charts####
jpeg("FING6702_Mod6_R_Graph1.jpeg", quality = 75) chart.Boxplot(Monthly_Ret_Wide_TS) dev.off()
jpeg("FING6702_Mod6_R_Graph2.jpeg", quality = 75) chart.RiskReturnScatter(Monthly_Ret_Wide_TS) dev.off()
jpeg("FING6702_Mod6_R_Graph3.jpeg", quality = 75) chart.SnailTrail(Monthly_Ret_Wide_TS, legend.loc = "topleft") dev.off()
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
