Question: can i get some help with this, need to turn it in monday 27th.. for my final.. this was all we were given Complete the
can i get some help with this, need to turn it in monday 27th.. for my final..
this was all we were given
Complete the implementation of B-Tree using the class set as shown in the attached C++ and header files. You should closely follow the pseudo code/algorithm described in the book(Data Structures and Other Objects Using C++ 4th Edition by Michael Main, Walter Savitch) in your implementation. Write a driver code that will test each function in your B-Tree implementation.
//**********************************************
//set.h
//**********************************************
// FILE: set.h (part of the namespace main_savitch_11)
// TEMPLATE CLASS PROVIDED: set
// (a container template class for a set of items)
//
// TYPEDEFS for the set class:
// set::value_type
// set::value_type is the data type of the items in the set. It may be
// any of the C++ built-in types (int, char, etc.), or a class with a
// default constructor, a copy constructor, an assignment operator, and a
// less-than operator forming a strict weak ordering.
//
// CONSTRUCTOR for the set class:
// set( )
// Postcondition: The set is empty.
//
// MODIFICATION MEMBER FUNCTIONS for the set class:
// void clear( )
// Postcondition: The set is empty.
//
// bool insert(const Item& entry)
// Postcondition: If an equal entry was already in the set, the set is
// unchanged and the return value is false. Otherwise, entry was added
// to the set and the return value is true. This is slightly different than
// the C++ Standard Library set (see Appendix H).
//
// size_t erase(const Item& target)
// Postcondition: If target was in the set, then it has been removed from
// the set and the return value is 1. Otherwise the set is unchanged and the
// return value is zero.
//
// CONSTANT MEMBER FUNCTIONS for the Set class:
// size_t count(const Item& target) const
// Postcondition: Returns the number of items equal to the target
// (either 0 or 1 for a set).
//
// bool empty( ) const
// Postcondition: Returns true if the set is empty; otherwise returns false.
//
// VALUE SEMANTICS for the set class:
// Assignments and the copy constructor may be used with set objects.
//
// DYNAMIC MEMORY USAGE by the set class:
// If there is insufficient dynamic memory, then the following functions throw
// bad_alloc:
// The constructors, insert, and the assignment operator.
#ifndef MAIN_SAVITCH_SET_H
#define MAIN_SAVITCH_SET_H
#include // Provides size_t
namespace main_savitch_11
{
template
class set
{
public:
// TYPEDEFS
typedef Item value_type;
// CONSTRUCTORS and DESTRUCTOR
set( );
set(const set& source);
~set( ) { clear( ); }
// MODIFICATION MEMBER FUNCTIONS
void operator =(const set& source);
void clear( );
bool insert(const Item& entry);
std::size_t erase(const Item& target);
// CONSTANT MEMBER FUNCTIONS
std::size_t count(const Item& target) const;
bool empty( ) const { return (data_count == 0); }
// SUGGESTED FUNCTION FOR DEBUGGING
void print(int indent) const;
private:
// MEMBER CONSTANTS
static const std::size_t MINIMUM = 2;
static const std::size_t MAXIMUM = 2 * MINIMUM;
// MEMBER VARIABLES
std::size_t data_count;
Item data[MAXIMUM+1];
std::size_t child_count;
set *subset[MAXIMUM+2];
// HELPER MEMBER FUNCTIONS
bool is_leaf( ) const { return (child_count == 0); }
bool loose_insert(const Item& entry);
std::size_t get_index(const Item& entry);
bool loose_erase(const Item& target);
void remove_biggest(Item& removed_entry);
void fix_excess(std::size_t i);
void fix_shortage(std::size_t i);
set* b_tree_copy(const set* root_ptr);
void b_tree_clear(set*& root_ptr);
// NOTE: The implementor may want to have additional helper functions
};
}
//#include "set.template" // Include the implementation.
namespace main_savitch_11 {
template
set::set() {
data_count = 0;
child_count = 0;
for (auto& p : subset) {
p = nullptr;
}
}
template
set::set(const set& source) {
//data_count = source.data_count;
//child_count = source.child_count;
//for (int i = 0; i < data_count; i++) {
// data[i] = source.data[i];
//}
this = b_tree_copy(&source);
}
template
set* b_tree_copy(const set* root_ptr) {
if (root_ptr == nullptr) {
return nullptr;
}
set* set_ptr = new set;
set_ptr->data_count = root_ptr->data_count;
set_ptr->child_count = root_ptr->child_count;
for (int i = 0; i < data_count; i++) {
set_ptr->data[i] = root_ptr->data[i];
}
for (int i = 0; i < set_ptr->child_count; i++) {
set_ptr->subset[i] = b_tree_copy(root_ptr->subset[i]);
}
return set_ptr;
}
template
void set::clear() {
for (auto& v : data) {
v = Item();
}
for (auto& p : subset) {
b_tree_clear(p);
}
data_count = 0;
child_count = 0;
}
template
void set::b_tree_clear(set*& root_ptr) {
if (root_ptr != nullptr) {
for (auto& v : root_ptr->data) {
v = Item();
}
for (int i = 0; i < root_ptr->child_count; i++) {
b_tree_clear(root_ptr->subset[i]);
}
delete root_ptr;
root_ptr = nullptr;
}
}
template
void set::operator=(const set& source) {
if (this == &source) {
return;
}
clear();
this = b_tree_copy(&source);
}
template
std::size_t count(const Item& target) const {
std::size_t i = get_index(target);
if (i < data_count && !(target < data[i]) {
return 1;
}
if (child_count == 0) {
return 0;
}
return subset[i]->count(target);
}
template
std::size_t set::get_index(const Item& entry) {
for (std::size_t i = 0; i < data_count; i++) {
if (!(data[i] < entry)) {
return i;
}
}
return data_count;
}
template
bool set::loose_insert(const Item& entry) {
std::size_t i = get_index(entry);
if (i < data_count && !(entry < data[i]) {
return false;
}
if (child_count == 0) {
for (std::size_t ix = data_count - 1; ix >= i; ix--) {
data[ix + 1] = data[ix];
}
data[i] = entry;
data_count++;
return true;
}
bool b = subset[i]->loose_insert(entry);
if (subset[i]->data_count == MAXIMUM + 1) {
fix_excess(i);
}
}
template
void set::fix_excess(std::size_t i) {
for (std::size_t ix = child_count - 1; ix > i; ix--) {
subset[ix + 1] = subset[ix];
}
subset[i + 1] = new set;
child_count++;
for (std::size_t ix = MINIMUM + 1; ix < MAXIMUM + 2; ix++){
subset[i + 1]->subset[ix - MINIMUM - 1] = subset[i]->subset[ix];
}
for (std::size_t ix = MINIMUM + 1; ix < MAXIMUM + 1; ix++){
subset[i + 1]->data[ix - MINIMUM - 1] = subset[i] -> data[ix];
}
subset[i]->data_count = MINIMUM;
subset[i + 1]->data_count = MINIMUM;
subset[i]->child_count = MINIMUM + 1;
subset[i + 1]->child_count = MINIMUM + 1;
for (std::size_t ix = data_count - 1; ix >= i; ix--) {
data[ix + 1] = data[ix];
}
data_count++;
data[i] = subset[i]->data[MINIMUM];
}
template
bool set::insert(const Item& entry) {
if (!loose_insert(entry)) {
return false;
}
if (data_count > MAXIMUM) {
set* pset = new set;
pset->subset[0] = this;
pset->child_count = 1;
this = pset;
fix_excess(0);
}
return true;
}
template
bool set::loose_erase(const Item& target) {
}
template
void set::remove_biggest(Item& removed_entry) {
}
template
void set::fix_shortage(std::size_t i) {
}
//bool loose_erase(const Item& target);
}
#endif
//************************
//source.cpp
//**********************
#include
#include "set.h"
using namespace std;
using namespace main_savitch_11;
int main() {
set s;
set* ds = new set < double > ;
return 0;
}
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
