Question: Can someone help me with this code: import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm # Example of a symmetric Gaussian

Can someone help me with this code:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
# Example of a symmetric Gaussian proposal distribution
def gaussian_proposal(current_value, sigma=1):
return np.random.normal(current_value, sigma)
def metropolis_exposure_limit(initial_value, num_samples, proposal_distribution, data):
samples =[initial_value]
current_value = initial_value
for _ in range(num_samples):
candidate = proposal_distribution(current_value)
acceptance_ratio = exposure_target(candidate, data)/ exposure_target(current_value, data)
acceptance_ratio = min(acceptance_ratio, 1) # Ensure acceptance ratio is <=1
if np.random.uniform(0,1)<= acceptance_ratio:
current_value = candidate
samples.append(current_value)
return samples
# Fix the code by correcting the data type mismatch in the exposure_target function
def exposure_target(x, data):
# Convert data to a NumPy array to enable broadcasting
data = np.array(data)
# Calculate the target distribution using the kernel density estimation formula
return np.exp(-((x - data)**2).sum()/(2* len(data)))/ np.sqrt(2* np.pi)
# Re-run the code with the corrected function
samples = metropolis_exposure_limit(initial_value, num_samples, gaussian_proposal, data)
# Prompt the user to input the data
print("Enter exposure data (comma-separated values): ")
data_input = input().split(',')
data =[float(x) for x in data_input] # Convert input string to a list of floats
# Example usage
initial_value = np.mean(data) # Initial exposure level (mean of input data)
num_samples =10000 # Number of samples to generate
samples = metropolis_exposure_limit(initial_value, num_samples, gaussian_proposal, data)
# Calculate the 95th percentile exposure limit
exposure_limit = np.percentile(samples,95)
# Calculate the mean and standard deviation for the Bayesian analysis
mean_estimate = np.mean(samples)
std_estimate = np.std(samples)
# Calculate the probability of overexposure (risk) using a normal distribution
risk_probability =1- norm.cdf(exposure_limit, loc=mean_estimate, scale=std_estimate)
# Calculate probabilities for each risk band
percentile_1= norm.cdf(0.01* exposure_limit, loc=mean_estimate, scale=std_estimate)
percentile_10= norm.cdf(0.1* exposure_limit, loc=mean_estimate, scale=std_estimate)- percentile_1
percentile_50= norm.cdf(0.5* exposure_limit, loc=mean_estimate, scale=std_estimate)- norm.cdf(0.1* exposure_limit, loc=mean_estimate, scale=std_estimate)
percentile_100= norm.cdf(exposure_limit, loc=mean_estimate, scale=std_estimate)- norm.cdf(0.5* exposure_limit, loc=mean_estimate, scale=std_estimate)
overexposure_risk =1- norm.cdf(exposure_limit, loc=mean_estimate, scale=std_estimate)
# Print risk analysis results
print("
Risk analysis based on 95th percentile:")
print("95th Percentile:", exposure_limit)
print("Estimated Mean:", mean_estimate)
print("Estimated Standard Deviation:", std_estimate)
print("Risk Probability (Risk of overexposure): {:.1f}%".format(risk_probability *100))
print("Probability that true 95th percentile <1% of ELV:", percentile_1)
print("Probability that true 95th percentile is between 1% and 10% of ELV:", percentile_10)
print("Probability that true 95th percentile is between 10% and 50% of ELV:", percentile_50)
print("Probability that true 95th percentile is between 50% and 100% of ELV:", percentile_100)
# Decision based on risk probability
if risk_probability *100<30:
decision = "Well controlled"
else:
decision = "Poorly controlled"
print("Accordingly, the situation is declared:", decision)
# Plot probability distribution by risk band
risk_bands =['<1% of ELV', '1-10% of ELV', '10-50% of ELV', '50-100% of ELV', '> VLE']
probabilities =[percentile_1, percentile_10, percentile_50, percentile_100, overexposure_risk]
plt.bar(risk_bands, probabilities, color='b')
plt.xlabel('Risk Band')
plt.ylabel('Probability')
plt.title('Probability Distribution by Risk Band')
plt.axhline(y=overexposure_risk, color='r', linestyle='--', label='Overexposure Risk')
plt.legend()
plt.grid(True)
plt.show()
# Plot histogram of exposure samples
plt.hist(samples, bins=50, density=True, alpha=0.6, color='g', label='Exposure Samples')
plt.axvline(x=exposure_limit, color='r', linestyle='--', label='Exposure Limit (95%)')
plt.xlabel('Exposure Level')
plt.ylabel('Density')
plt.title('Histogram of Exposure Levels')
plt.legend()
plt.grid(True)
plt.show()
This code still gets a error if ran with a line of data for example, 26,13,45,67,32,56
Can you adjust the code so it accepts a unlimited amount of data?

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!