Question: can you help me optimize and make the following code run faster. I also would like to stabalize venus orbIt. The simulation will shiw when

can you help me optimize and make the following code run faster. I also would like to stabalize venus orbIt. The simulation will shiw when Theia collidse with
# Adjust rendering parameters
#mpl.rcParans['agg.path.chunksize']=10000
# Constants
G=6.67430e-11 # Gravitational constant ((:m3(kg)kg-1s-2}
n_sun =1.989e30, # Mass of the Sun (kg) n_earth =5.972e24, # Mass of Earth (kg)
m_earn =5.972e24 # Mass of Earth (kg) m_theia =3.2846e24 # Mass of venus (kg) m Mass of Theia (kg)
def acceleration(t, state):
if np.sqrt((x_earth - x_theia)?22+(y_earth - y_theia)?22)1e6:
Define a coltision threshold print("Alert: Earth and Theia are colliding!")
if np.isclose(x_earth, x_theia) and np.isclose(y_earth, y_theia)
ip.1sclose(x_earth, X_theia) and np.isclose(y_earth, y_theia):
return np.array([vx_earth, vy_earth, ax_earth, ay_earth,
vx_venus, vy_venus, ax_venus, ay_venus, vx_theia, vy_theia, ax_theia, ay_theia])
# Initial conditions
x0_earth, y0_earth =1.496e11, vxo_earth, vyo_earth =0,-29780
xo_venus, y_venus =1.082e11, vxo_venus, vyo_venus =0,-35260
initial_state earth, yo_earth, vxo_earth, vyo_earth
# Time paraneters
t_start_years, t_end_years =0,300000000
# Solve the ODE with tqdm
# Adjust integration parameters
method ='RK45'
tolerance =1e-6, # Tolerance for error control
# Solve the ODE with updated parameters
solution = solve_ivp(acceleration, t_span, initial_state, method=method,
rtol=tolerance, atol=tolerance, max_step=max_step)
# Extracting positions
earth_positions = solution. y[:2] venuspositions = solution. y[4:6]
venus_positions = solution.y 4:6 theia_positions = solution.y[8:10]
# Find when Earth and Theia have the same position
same_position_index = np.argmin(np.linalg, norm(earth_positions.
theia_positions, axis =0) same_position_time = solution.t [same_position_index]
# Handling division by zero
final_velocity_theia =np.linalg.norm(solution.y[10:12, same_position_index])
if np.allclose(acceleration(same position_time, solution.y[:
same_position_index]),(:?0}
else: final_acceleration_theia = np.linalg.norm(acceleration(same_position_time,
final_acceleration_theia_=
np.linalg.no solution.y[:, same_position_index])[10:12])
# Save positions to text files
np. savetxt('/Volumes/SEAGATE EXP/Data_theia/earth_positions2.txt',
earth_positions)
venus_positions)
np. savetxt('/Vol theia_positions)
# Plotting
plt. figure (figsize =(8,8)
plt.plot(venus_positions[0], venus_positions[1], label='venus orbit')
plt.scatter(earth_positions[0][-1], earth_positions[1][-1], color='blue',
marker='o', label=' Earth')
plt.scatter (venus_positions [0][-1], venus_positions[1][-1], color='green',
marker='0', label='venus') plt.scatter(theia_positions[0][-1], theia_positions[1][-1], color='red',
marker='o', label=' 'Theia')
plt. scatter (,, color='yellow', label='Sun', zorder=5)
plt.xlabel('x (m)') plt.ylabel('y (m)')
plt.title('orbits of Earth, Venus, and Theia around the Sun')
plt.gca().set_aspend() plt.legend
# Specify the path to save the plot
plot_save_path ='/Volumes/SEAGATE EXP/Data_theia/untitled folder/plot.png'
# Save the plot to an external file
atot_save_path)
# Print a message indicating where the plot is saved print(f"Plot saved to: {plot save path}")
print(f"Plot saved to: {plot_save_path}")
print(f"Time when Earth and Theia have the same position:
{same position_time:.2f} seconds")
print(f"Final acceleration of Theia at that time: {final_acceleration_theia:.2e (:ms2?''}
# Print final positions and velocities
print("Final positions:")
print(f"Theia: {theia_positio
print("'nfinat velocities:")
print(f"Theia: {solution.y[10:12,-1]}")
can you help me optimize and make the following

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!