Question: $cdot $ Let $T: C[-1,1] ightarrow mathbb{R}, T(f)=int_{-1}^{1} e^{t} f(t) d t$ (a) Show that $N(T)$ is a complete subspace of $C[-1,1]$. (b) Show that
![$\cdot $ Let $T: C[-1,1] ightarrow \mathbb{R}, T(f)=\int_{-1}^{1} e^{t} f(t) d](https://dsd5zvtm8ll6.cloudfront.net/si.experts.images/questions/2024/09/66f3befc95f9f_17266f3befc48b5f.jpg)
$\cdot $ Let $T: C[-1,1] ightarrow \mathbb{R}, T(f)=\int_{-1}^{1} e^{t} f(t) d t$ (a) Show that $N(T)$ is a complete subspace of $C[-1,1]$. (b) Show that the set $\{f \in C[-1,1]: f$ is odd $\} \varsubsetneqq N(T)$. CS.VS. 1583| 0. |
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
