Question: Classification Using the Iris Dataset Instructions: Using the Iris dataset provided, perform the following tasks: Task 1 : Preprocess the Iris dataset. Handle missing values
Classification Using the Iris Dataset
Instructions: Using the Iris dataset provided, perform the following tasks:
Task : Preprocess the Iris dataset. Handle missing values and normalize data where needed.
Task : Use both Decision Tree and Logistic Regression to classify the type of iris flower Setosa Versicolor, or Virginica based on features like sepal length, sepal width, petal length, and petal width. Explain how each algorithm classifies the flowers into the three categories.
Task : Train and test the models using appropriate metrics like accuracy, precision, recall, and Fscore.
Task : Provide a comparative analysis of the two algorithms in terms of their performance, and comment on the following.
Which algorithm had better accuracy or Fscore?
Which model was faster or easier to train?
How does normalization affect performance?
IRIS dataset
sepallength sepalwidth petallength petalwidth species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
