Question: Classification Using the Iris Dataset Instructions: Using the Iris dataset provided, perform the following tasks: Task 1 : Preprocess the Iris dataset. Handle missing values

Classification Using the Iris Dataset
Instructions: Using the Iris dataset provided, perform the following tasks:
Task 1: Preprocess the Iris dataset. Handle missing values and normalize data where needed.
Task 2: Use both Decision Tree and Logistic Regression to classify the type of iris flower (Setosa, Versicolor, or Virginica) based on features like sepal length, sepal width, petal length, and petal width. Explain how each algorithm classifies the flowers into the three categories.
Task 3: Train and test the models using appropriate metrics like accuracy, precision, recall, and F1-score.
Task 4: Provide a comparative analysis of the two algorithms in terms of their performance, and comment on the following.
Which algorithm had better accuracy or F1-score?
Which model was faster or easier to train?
How does normalization affect performance?
IRIS dataset
sepal_length sepal_width petal_length petal_width species
5.13.51.40.2 setosa
4.931.40.2 setosa
4.73.21.30.2 setosa
4.63.11.50.2 setosa
53.61.40.2 setosa
5.43.91.70.4 setosa
4.63.41.40.3 setosa
53.41.50.2 setosa
4.42.91.40.2 setosa
4.93.11.50.1 setosa
5.43.71.50.2 setosa
4.83.41.60.2 setosa
4.831.40.1 setosa
4.331.10.1 setosa
5.841.20.2 setosa
5.74.41.50.4 setosa
5.43.91.30.4 setosa
5.13.51.40.3 setosa
5.73.81.70.3 setosa
5.13.81.50.3 setosa
5.43.41.70.2 setosa
5.13.71.50.4 setosa
4.63.610.2 setosa
5.13.31.70.5 setosa
4.83.41.90.2 setosa
531.60.2 setosa
53.41.60.4 setosa
5.23.51.50.2 setosa
5.23.41.40.2 setosa
4.73.21.60.2 setosa
4.83.11.60.2 setosa
5.43.41.50.4 setosa
5.24.11.50.1 setosa
5.54.21.40.2 setosa
4.93.11.50.1 setosa
53.21.20.2 setosa
5.53.51.30.2 setosa
4.93.11.50.1 setosa
4.431.30.2 setosa
5.13.41.50.2 setosa
53.51.30.3 setosa
4.52.31.30.3 setosa
4.43.21.30.2 setosa
53.51.60.6 setosa
5.13.81.90.4 setosa
4.831.40.3 setosa
5.13.81.60.2 setosa
4.63.21.40.2 setosa
5.33.71.50.2 setosa
53.31.40.2 setosa
73.24.71.4 versicolor
6.43.24.51.5 versicolor
6.93.14.91.5 versicolor
5.52.341.3 versicolor
6.52.84.61.5 versicolor
5.72.84.51.3 versicolor
6.33.34.71.6 versicolor
4.92.43.31 versicolor
6.62.94.61.3 versicolor
5.22.73.91.4 versicolor
523.51 versicolor
5.934.21.5 versicolor
62.241 versicolor
6.12.94.71.4 versicolor
5.62.93.61.3 versicolor
6.73.14.41.4 versicolor
5.634.51.5 versicolor
5.82.74.11 versicolor
6.22.24.51.5 versicolor
5.62.53.91.1 versicolor
5.93.24.81.8 versicolor
6.12.841.3 versicolor
6.32.54.91.5 versicolor
6.12.84.71.2 versicolor
6.42.94.31.3 versicolor
6.634.41.4 versicolor
6.82.84.81.4 versicolor
6.7351.7 versicolor
62.94.51.5 versicolor
5.72.63.51 versicolor
5.52.43.81.1 versicolor
5.52.43.71 versicolor
5.82.73.91.2 versicolor
62.75.11.6 versicolor
5.434.51.5 versicolor
63.44.51.6 versicolor
6.73.14.71.5 versicolor
6.32.34.41.3 versicolor
5.634.11.3 versicolor
5.52.5

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!