Question: Consider a multicore architecture with 10 computing cores: 2 processor cores and 8 coprocessors. Each processor core can deliver 2.0 GFlops, while each coprocessor can

Consider a multicore architecture with 10 computing cores: 2 processor cores and 8 coprocessors. Each processor core can deliver 2.0 GFlops, while each coprocessor can deliver 1.0 GFlops. All computing cores can perform calculation simultaneously. Any instruction can execute in either processor or coprocessor cores unless there are any explicit restrictions.

70% -> 30%

A) If 70% of dynamic instructions in an application are parallelizable, what is the maximum average performance (Flops) you can get in the optimal situation? Please note that the remaining 30% instructions can be executed only after the execution of the parallel 70% is over (as shown below).

b) Consider another application where all the dynamic instructions can be partitioned into 6 groups (A, B, C, D, E, F) with the following dependency. For example, A C implies that all the instructions in A need to be completed before starting the execution of instructions in C. Each of the first four groups (A, B, C and D) contains 20% of the dynamic instructions whereas each of the remaining two groups (E and F) contains 10% of the dynamic instructions. All the instructions in each group must be executed sequentially on the same processor or coprocessor core. How to schedule them on the multicore architecture to achieve the best possible performance? What is the maximum average performance (Flops) now?

A 20% -> C 20% \

-> E 10% -> F 10%

B 20% -> D 20 % /

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!