Question: Consider a uniform rod of material whose temperature varies only along its length, in the x direction. By considering the heat flowing from both directions

Consider a uniform rod of material whose temperature varies only along its length, in the x direction. By considering the heat flowing from both directions into a small segment of length Δx, derive the heat equation,

T = K

where K= κt/cρ, c is the specific heat of the material, and ρ is its density. (Assume that the only motion of energy is heat conduction within the rod; no energy enters or leaves along the sides.) Assuming that K is independent of temperature, show that a solution of the heat equation is

where T0 is a constant background temperature and A is any constant. Sketch (or use a computer to plot) this solution as a function of x, for several values of t. Interpret this solution physically, and discuss in some detail how energy spreads through the rod as time passes.


T = K

Step by Step Solution

3.40 Rating (159 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mechanical Engineering Questions!