Question: Consider the following linear programming problem: Maximize 6x+5y ( OBJ ) Subject to x+y6 (1) 2x+y8 (2) y5 (3) x,y0 What isthe optimal solution to
Consider the following linear programming problem:
Maximize 6x+5y (OBJ)
Subject tox+y6 (1)
2x+y8 (2)
y5 (3)
x,y0
What isthe optimal solution to this problem? What is the optimal value of the objective function?
Solve this model by using graphical analysis based on the Corner Point Solution Method.
Answer questions below.
2.1. Clearly plot and label the constraints. Show your calculations for drawing constrain line. The solution without calculation will not be accepted. (3 points)
2.2. Develop and shade the feasible region. Use graph paper. (2 points)
2.3. Compute all the corner points or extreme points and their coordinates (i.e. the values of x and y). The solution without calculation will not be accepted. (2points)
2.4. Determine the optimal solution (i.e. the values of x and y) using corner points method.
Why your solution is optimal? (2 points)
2.5 Compute the value of the objective function at the optimal solution. (2 points)
2.6. Identify the binding and non-binding constraint(s). Explain why? (2 points)
2.7 Is coordinate (4, 2) feasible solution? Explain Why? The solution without any explanation will not be accepted (1 point)
Show the graph with the optimal point. Make the conclusion:
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts

Study Help