Question: Consider the hyperbola having the equation short dash 4 x squared plus 9 y squared plus 8 x plus 36 y minus 4 equals 0.
Consider the hyperbola having the equation short dash 4 x squared plus 9 y squared plus 8 x plus 36 y minus 4 equals 0. Complete the square, then use the result to find the center, vertices, foci, equations of the asymptotes, and the eccentricity of the hyperbola. a.) Center: left parenthesis 1 comma space short dash 2 right parenthesis Vertices: open parentheses short dash 1 comma space short dash 2 close parentheses and open parentheses 3 comma space short dash 2 close parentheses Foci: open parentheses 1 minus square root of 13 comma space short dash 2 close parentheses and open parentheses 1 plus square root of 13 comma space short dash 2 close parentheses Equations of the asymptotes: y equals 3 over 2 x minus 7 over 2 and y equals short dash 3 over 2 x minus 1 half Eccentricity: e equals fraction numerator square root of 13 over denominator 2 end fraction almost equal to 1.80 b.) Center: left parenthesis short dash 1 comma space short dash 2 right parenthesis Vertices: open parentheses short dash 1 comma space short dash 4 close parentheses and open parentheses short dash 1 comma space 0 close parentheses Foci: open
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
