Question: Consider the initial value problem y + p ( x ) y = q ( x ) , y ( x 0 ) =

Consider the initial value problem

                                                      y+ p(x)= q(x),            y(x0) = y0,

where p(x) and q(x) are continuous on some open interval I.

(a) Use the method of variation of parameters to show that the solution is of the form                              y(x) = yoef, t) dt q(t)eli p(o)ds dt. %3D

(b) Use the solution formula given in (a) to solve the initial value problem

                                                                                  

                                                                               xy− 4= −2x− 4,                                y(1) = 1,                       x ≠ 0.

y(x) = yoef, t) dt q(t)eli p(o)ds dt. %3D

Step by Step Solution

3.41 Rating (151 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!