Question: Consider the one - dimensional wave equation: d e l 2 u d e l t 2 = c 2 d e l 2 u

Consider the one-dimensional wave equation: del2udelt2=c2del2udelx2. Applying the Fourier transform with respect to x, the transformed equation becomes:
Oorweeg die eendimensionele golfvergelyking: del2udelt2=c2del2udelx2. Deur die Fourier-transform met betrekking tot x toe te pas, word die vergelyking getransformeer na:
(A)del2U(,t)delt2+c2U(,t)=0
(B)del2U(,t)delt2-c22U(,t)=0
(C)del2U(,t)delt2+c2del2U(,t)del2=0
(D)del2U(,t)delt2+c22U(,t)=0
(E)del2U(,t)delt2-c2U(,t)=0
Determine the inverse Fourier transform f(t) of the function F(), where B>0 and Bepaal die inverse Fourier-transform f(t) van die funksie F(), waar B>0 en
F()={1vir||B,0vir||>B,
(A)f(t)=sin(Bt)t
(B)f(t)=sin(Bt)t
(C)f(t)=e-B|t|
(D)f(t)=cos(Bt)
(E)f(t)=111+t2
Consider the one - dimensional wave equation: d e

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Electrical Engineering Questions!