Question: Consider the preference represented by the following utility function: u(x,y)= (x^)/ + (y^)/ where1,=0. (5)Derive the marginal rate of substitution for this utility function. (5)
Consider the preference represented by the following utility function:
u(x,y)= (x^)/ + (y^)/
where1,=0.
- (5)Derive the marginal rate of substitution for this utility function.
- (5) Does this preference have the characteristic of diminishing marginal rate of substitu- tion? Explain your answer for full credits.
- (5) Is this preference homothetic? Explain your answer for full credits. Be sure to explain what homothetic means.
- (5)Propose a monotonic transformation g() that converts the above utility functionu(x,y) to a different utility function v(x, y) so that they represent the same preference. Verify that g() converts u(x,y) to v(x,y) and show that it is order preserving.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
