Question: Consider the sequenceStartSet StartFraction 1 Over n EndFraction EndSet Subscript n equals 1 Superscript infinity1nn=1.On each subintervalleft parenthesis StartFraction 1 Over n plus 1 EndFraction
Consider the sequenceStartSet StartFraction 1 Over n EndFraction EndSet Subscript n equals 1 Superscript infinity1nn=1.On each subintervalleft parenthesis StartFraction 1 Over n plus 1 EndFraction comma StartFraction 1 Over n EndFraction right parenthesis1n+1,1nwithin the interval[0,1], erect the rectangle with areaa Subscript nanhaving heightStartFraction 1 Over n EndFraction1nand width equal to the length of the subinterval. Find the total areaSummation from nothing to nothing a Subscript nanof all the rectangles.(Hint: Use the resultSummation from n equals 1 to infinity StartFraction 1 Over n left parenthesis n plus 1 right parenthesis EndFractionn=11n(n+1)equals=1).Question content area bottomPart 1The total area of all the rectangles isSummation from nothing to nothing a Subscript nanequals=enter your response here.(Type an exact answer.)
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
