Question: Consider the vectors begin{bmatrix} 1 2 7 end{bmatrix}, begin{bmatrix} 3 -1 8 end{bmatrix}, begin{bmatrix} 0 5 4 end{bmatrix}, begin{bmatrix}

Consider the vectors \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 8 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ 4 \end{bmatrix}, \begin{bmatrix} 7 \\ 20 \\ 77 \end{bmatrix}. Are the vectors linearly dependent or independent? Hint: Note that we have 4 vectors in \mathbb{R}^3 and therefore the system x_1 \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}+ x_2 \begin{bmatrix} 3 \\ -1 \\ 8 \end{bmatrix}+x_3 \begin{bmatrix} 0 \\ 5 \\ 4 \end{bmatrix}+ x_4 \begin{bmatrix} 7 \\ 20 \\ 77 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} is homogeneous and underdetermined (read carefully the NOTE in the slide)

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!