Question: content area top Part 1 Verify the identity left parenthesis cotangent x minus 1 right parenthesis left parenthesis cotangent x plus 1 right parenthesis equals
content area top Part 1 Verify the identity left parenthesis cotangent x minus 1 right parenthesis left parenthesis cotangent x plus 1 right parenthesis equals cosecant squared x minus 2 Question content area bottom Part 1 Choose the correct answer below. A. The two sides of the equation are equal since multiplying the left side results in left parenthesis cotangent x minus 1 right parenthesis left parenthesis cotangent x plus 1 right parenthesis equals 1 minus cotangent squared x and using a Pythagorean identity on the right side results in cosecant squared x minus 2 equals 1 minus cotangent squared x . B. The given equation is not an identity because the two sides are not equal, left parenthesis cotangent x minus 1 right parenthesis left parenthesis cotangent x plus 1 right parenthesis not equals cosecant squared x minus 2 . C. The two sides of the equation are equal since multiplying the left side results in left parenthesis cotangent x minus 1 right parenthesis left parenthesis cotangent x plus 1 right parenthesis equals 1 plus cotangent squared x and using a Pythagorean identity on the right side results in cosecant squared x minus 2 equals 1 plus cotangent squared x . D. The two sides of the equation are equal since multiplying the left side results in left parenthesis cotangent x minus 1 right parenthesis left parenthesis cotangent x plus 1 right parenthesis equals cotangent squared x minus 1 and using a Pythagorean identity on the right side results
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
