Question: Customer arrivals at an ATM are a random Poisson variable, and there is an average time of 5 minutes between each arrival. Moreover, the time

Customer arrivals at an ATM are a random Poisson variable, and there is an average time of 5 minutes between each arrival. Moreover, the time spent by a customer at the counter is an exponential random variable with an average time of 3 minutes. Using the minute as a unit of time, answer the following questions:
(a) What is the probability that a client occupies the counter for less than 3 minutes?
(b) What is the probability that there are at least two clients in the queue?
(c) If the bank installs a second counter, what will be the average time spent by a client in the queue?
(d) If the bank installs a second counter, what will be the average number of unoccupied counters?
(e) Suppose the bank is willing to install a second counter only when clients will have to wait at least 6 minutes on average before being able to access a counter. What should the arrival rate of clients be to justify the installation of a second counter?

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related General Management Questions!