Question: D Question 2 16.67 pts Suppose X is a random variable uniformly distributed on [11, 14]. Determine the standard deviation of X. O O O

![uniformly distributed on [11, 14]. Determine the standard deviation of X. O](https://s3.amazonaws.com/si.experts.images/answers/2024/06/66681564392c2_2526668156418b36.jpg)








D Question 2 16.67 pts Suppose X is a random variable uniformly distributed on [11, 14]. Determine the standard deviation of X. O O O 05 O1D Question 4 16.67 pts Find the degree 5 Taylor polynomial for the function -(z - 3) centered at @ = 1. O -(2 + 1)3 + 12(x + 1)2 - 48(x + 1) + 64 O (2 - 1)3 + 12(x - 1)2 + 48(x - 1) + 64 O -23 + 9x2 - 27x + 27 O -(x - 1)3 +6(x - 1)2 - 12(x - 1) + 8 D Question 5 16.67 pts Find the degree 4 Taylor polynomial for the function e2x-3 centered at c =1. Ofe '(x+1)+ e 5(x+1)3 + 2e 5(x+1)2 + 2e 5 (x + 1)te-5 Ole Battle 323 + 2e-3x2 + 2e 3xte-3 Ofel(x - 1)* + e-1(x -1)3 + 2e-1(x -1)' + 2e-1(x-1) +e-1D Question 5 16.67 pts Find the degree 4 Taylor polynomial for the function e2t-3 centered at r =1. Ole (x+1)+ e (x+1)3 + 2e 5(x+1)? + 2e 5(a+ 1) te-5 Ole Battle 3x3+ 2e-3x3 + 2e Bate-3 Ole(x - 1)* + el(x -1)3 + 2e-1(x -1)3 + 2e-1(x -1)+e-1 Ofe 5(x -1)4 - 4e 5(x - 1)3 + 2e 5(x - 1)2 - 2e 5(x- 1)te-5 D Question 6 16.67 pts Find the degree 2 Taylor polynomial for the function In(-2 x - 5) centered at c = -5. O 25 (2 + 5)' + (x+ 5)- In5 O Ex + In 5 0 -2 (x+5)2 - 2(x+ 5) + In5D Question 4 16.67 pts Find the degree 5 Taylor polynomial for the function -(z - 3) centered at 0 =1. O -(x+1)3 + 12(* + 1)2 - 48(x + 1) + 64 O (2 - 1)3 + 12(x - 1)2 + 48(x - 1) + 64 O -23 + 9x2 - 27x + 27 O -(x - 1)3 +6(x -1)2 - 12(x - 1) + 8Suppose X is a random variable exponentially distributed with mean 3 Determine P(X > 20). O 3 -6 De 6 O e6 Oe-3 D Question 2 16.67 pts Suppose X is a random variable uniformly distributed on [11, 14]. Determine the standard deviation of X. O O O N/- 01
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
