Question: d x 1 d t = 3 x 2 + 2 x 2 + u 1 = f ( x 1 , x 2 ,

dx1dt=3x2+2x2+u1=f(x1,x2,ni)
dx3dt=-1.5x1+5x22+Ht=ft(x1,x2,H2)
kx1=I,f(x1,x2,H1)
kx2=Tf1(x1,x2,n2)
k2x1=I,ff(x1+kx12,x2+kx22,x1)
k1x2=I2f2(x1+kx12,x2+kx22,2)
kx1=Iff(x1+kx12,x2+kx22,u1)
k2x2=I1f2(x1+k1x12,x2+k2x22,u2)
k1x1=If1(x1+k1x1,x3+k1x2,u1)
k1x1=If2(x1+k3x1,x2+kx2,u2)
x1[n+1]=x1[n]+16(kxi+2k2xi+2k3xi+k3xi)
x3[n+1]=x1[n]+16(k1+2k2x2+2k3x2+k2x2)
dx1dt=3x12+2x2+u4=f(x1,x2,ui)
du2dt=-1.5x1+5x22+u2=f2(x1,x2,u2)
x1(1)=0.5
x2(1)=0.5
u1(1:1000)=1.2;
u2(1:1000)=-1.2;
for n=1:1000
k1x1(n)=T1f1(x1(n),x2(n)nu1(n))
k1x2(n)=I1f2(x1(n),x2(n),u2(n))
k2x1(n)=If1(x1(n)+k1x1(n)2,x2(n)+k1x2(n)2,n1(n))
k2x2(n)=If2(x1(n)+k1x1(n)2,x2(n)+k1x2(n)2,u2(n))
21
k1x1(n)=Tf1(x1(n)+k1x1(n)2,x2(n)+k2x2(n)2,u1(n))
k1x2(n)=Tnf2(x1(n)+k2x1(n)2,x2(n)+k1x2(n)2,n2(n))
k1x1(n)=Tf1(x1(n)+k1x1(n),x2(n)+k1x2(n),u1(n))
k4x3(n)=Tf2(x1(n)+k1x1(n),x2(n)+k1x2(n),u2(n))
xi(n+1)=xi(n)+16(k1xi(n)+2kxxi(n)+2kixi(n)+kixi(n))
x3(n+1)=x3(n)+16(k1x2(n)+2k2x2(n)+2k3x2(n)+k3x2(n))
end
function [dx1]=-finction (x1,x2,u1)
[:1=3**1**1+2**2+u
 dx1dt=3x2+2x2+u1=f(x1,x2,ni) dx3dt=-1.5x1+5x22+Ht=ft(x1,x2,H2) kx1=I,f(x1,x2,H1) kx2=Tf1(x1,x2,n2) k2x1=I,ff(x1+kx12,x2+kx22,x1) k1x2=I2f2(x1+kx12,x2+kx22,2) kx1=Iff(x1+kx12,x2+kx22,u1) k2x2=I1f2(x1+k1x12,x2+k2x22,u2) k1x1=If1(x1+k1x1,x3+k1x2,u1) k1x1=If2(x1+k3x1,x2+kx2,u2) x1[n+1]=x1[n]+16(kxi+2k2xi+2k3xi+k3xi)

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!