Question: Date APP Total Return Total Return % FMF Total Return Tota Return % 21/12/2000 0.70 -0.171 -17% 0.29 0.069 7% 31/12/2001 0.58 -0.017 -2% 0.31
| Date | APP | Total Return | Total Return % | FMF | Total Return | Tota Return % |
| 21/12/2000 | 0.70 | -0.171 | -17% | 0.29 | 0.069 | 7% |
| 31/12/2001 | 0.58 | -0.017 | -2% | 0.31 | -0.065 | -6% |
| 31/12/2002 | 0.57 | 0.140 | 14% | 0.29 | 0.034 | 3% |
| 31/12/2003 | 0.65 | 0.569 | 57% | 0.30 | 0.867 | 87% |
| 31/12/2004 | 1.02 | 0.127 | 13% | 0.56 | 0.732 | 73% |
| 30/12/2005 | 1.15 | 0.035 | 3% | 0.97 | -0.010 | -1% |
| 29/12/2006 | 1.19 | -0.328 | -33% | 0.96 | -0.167 | -17% |
| 31/12/2007 | 0.80 | 0.100 | 10% | 0.80 | 0.062 | 6% |
| 31/12/2008 | 0.88 | 0.000 | 0% | 0.85 | -0.188 | -19% |
| 31/12/2009 | 0.88 | -0.125 | -13% | 0.69 | -0.420 | -42% |
| 31/12/2010 | 0.77 | 0.000 | 0% | 0.40 | 0.250 | 25% |
| 31/12/2011 | 0.77 | -0.078 | -8% | 0.50 | -0.200 | -20% |
| 31/12/2012 | 0.71 | -0.014 | -1% | 0.40 | 0.100 | 10% |
| 31/12/2013 | 0.70 | 0.000 | 0% | 0.44 | 0.432 | 43% |
| 31/12/2014 | 0.70 | 0.357 | 36% | 0.63 | 0.190 | 19% |
| 31/12/2015 | 0.95 | 0.105 | 11% | 0.75 | 0.067 | 7% |
| 31/12/2016 | 1.05 | 0.000 | 0% | 0.80 | 0.438 | 44% |
| 29/12/2017 | 1.05 | 0.429 | 43% | 1.15 | 0.826 | 83% |
| 31/12/2018 | 1.50 | 0.067 | 7% | 2.10 | 0.010 | 1% |
| 31/12/2019 | 1.60 | 0.062 | 6% | 2.12 | -0.005 | 0% |
| 31/12/2020 | 1.70 | -1.000 | -100% | 2.11 | -1.000 | -100% |
Compute, for each asset:
i. Total Returns
ii. Expected returns
iii. standard deviation
iv. Correlation Coefficient 10
2. Construct the variance-covariance matrix 10
3. Construct equally weighted portfolio and calculate Expected Return, Standard Deviation and Sharpe ratio. 10
4. Reconstruct equally weighted portfolio and calculate Expected Return, Standard Deviation and Sharpe ratio. 5
5. Use Solver to determine optimal risky portfolio. 5
6. Create hypothetical portfolios (commencing from Weight A=0 and weight B=100) 10
7. Calculate Expected return and Standard Deviation for all the above combinations 10
8. Graph the efficient frontier 10
9. Graph the optimal portfolio 5
10. Assuming that the investors prefers lower level of risk than what a portfolio of risky assets offer, introduce a risk free asset in the portfolio with a return of 3%
11. Using hypothetical weights (A= Portfolio of Risky Assets, B= 1 Risk Free Asset) calculate portfolio Expected Return and Standard Deviation 15
12. Graph the risk and returns - Capital Allocation Line.
Step by Step Solution
3.44 Rating (141 Votes )
There are 3 Steps involved in it
1 For Asset APP i Total Returns 0171 0017 0140 0569 0127 0035 0328 0100 0000 0125 0000 0078 0014 0000 0357 0105 0000 0429 0067 0062 1000 ii Expected R... View full answer
Get step-by-step solutions from verified subject matter experts
