Question: Describe an algorithm for concatenating two singly linked lists L and M, into a single list L that contains all the nodes of L followed
Describe an algorithm for concatenating two singly linked lists L and M, into a single list L that contains all the nodes of L followed by all the nodes of M
SinglyLinkedList which need to add public void concatenation(SinglyLinkedList other){} at the end of the sample code.
public class SinglyLinkedList
//---------------- nested Node class ----------------
/**
* Node of a singly linked list, which stores a reference to its
* element and to the subsequent node in the list (or null if this
* is the last node).
*/
private static class Node
/** The element stored at this node */
private E element; // reference to the element stored at this node
/** A reference to the subsequent node in the list */
private Node
/**
* Creates a node with the given element and next node.
*
* @param e the element to be stored
* @param n reference to a node that should follow the new node
*/
public Node(E e, Node
element = e;
next = n;
}
// Accessor methods
/**
* Returns the element stored at the node.
* @return the element stored at the node
*/
public E getElement() { return element; }
/**
* Returns the node that follows this one (or null if no such node).
* @return the following node
*/
public Node
// Modifier methods
/**
* Sets the node's next reference to point to Node n.
* @param n the node that should follow this one
*/
public void setNext(Node
} //----------- end of nested Node class -----------
// instance variables of the SinglyLinkedList
/** The head node of the list */
private Node
/** The last node of the list */
private Node
/** Number of nodes in the list */
private int size = 0; // number of nodes in the list
/** Constructs an initially empty list. */
public SinglyLinkedList() { } // constructs an initially empty list
// access methods
/**
* Returns the number of elements in the linked list.
* @return number of elements in the linked list
*/
public int size() { return size; }
/**
* Tests whether the linked list is empty.
* @return true if the linked list is empty, false otherwise
*/
public boolean isEmpty() { return size == 0; }
/**
* Returns (but does not remove) the first element of the list
* @return element at the front of the list (or null if empty)
*/
public E first() { // returns (but does not remove) the first element
if (isEmpty()) return null;
return head.getElement();
}
/**
* Returns (but does not remove) the last element of the list.
* @return element at the end of the list (or null if empty)
*/
public E last() { // returns (but does not remove) the last element
if (isEmpty()) return null;
return tail.getElement();
}
// update methods
/**
* Adds an element to the front of the list.
* @param e the new element to add
*/
public void addFirst(E e) { // adds element e to the front of the list
head = new Node<>(e, head); // create and link a new node
if (size == 0)
tail = head; // special case: new node becomes tail also
size++;
}
/**
* Adds an element to the end of the list.
* @param e the new element to add
*/
public void addLast(E e) { // adds element e to the end of the list
Node
if (isEmpty())
head = newest; // special case: previously empty list
else
tail.setNext(newest); // new node after existing tail
tail = newest; // new node becomes the tail
size++;
}
/**
* Removes and returns the first element of the list.
* @return the removed element (or null if empty)
*/
public E removeFirst() { // removes and returns the first element
if (isEmpty()) return null; // nothing to remove
E answer = head.getElement();
head = head.getNext(); // will become null if list had only one node
size--;
if (size == 0)
tail = null; // special case as list is now empty
return answer;
}
@SuppressWarnings({"unchecked"})
public boolean equals(Object o) {
if (o == null) return false;
if (getClass() != o.getClass()) return false;
SinglyLinkedList other = (SinglyLinkedList) o; // use nonparameterized type
if (size != other.size) return false;
Node walkA = head; // traverse the primary list
Node walkB = other.head; // traverse the secondary list
while (walkA != null) {
if (!walkA.getElement().equals(walkB.getElement())) return false; //mismatch
walkA = walkA.getNext();
walkB = walkB.getNext();
}
return true; // if we reach this, everything matched successfully
}
@SuppressWarnings({"unchecked"})
public SinglyLinkedList
// always use inherited Object.clone() to create the initial copy
SinglyLinkedList
if (size > 0) { // we need independent chain of nodes
other.head = new Node<>(head.getElement(), null);
Node
Node
while (walk != null) { // make a new node storing same element
Node
otherTail.setNext(newest); // link previous node to this one
otherTail = newest;
walk = walk.getNext();
}
}
return other;
}
public int hashCode() {
int h = 0;
for (Node walk=head; walk != null; walk = walk.getNext()) {
h ^= walk.getElement().hashCode(); // bitwise exclusive-or with element's code
h = (h << 5) | (h >>> 27); // 5-bit cyclic shift of composite code
}
return h;
}
/**
* Produces a string representation of the contents of the list.
* This exists for debugging purposes only.
*/
public String toString() {
StringBuilder sb = new StringBuilder("(");
Node
while (walk != null) {
sb.append(walk.getElement());
if (walk != tail)
sb.append(", ");
walk = walk.getNext();
}
sb.append(")");
return sb.toString();
}
public void concatenation(SinglyLinkedList other){
.....
}
}
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
