Question: Design and implement a genetic programming system to evolve some perceptrons that match well with a given training set. A training set is a collection

Design and implement a genetic programming system to evolve some perceptrons that match well with a given training set. A training set is a collection of tuples of the form (x1,...., xn, l), where xi's are real numbers and l is either 1 (positive example) or 0 (negative example). So for your genetic programming system, a "program" is just a tuple (w1, ...., wn ) of numbers (weights and the threshold). Answer the following questions: 1. What's your fitness function? 2. What's your crossover operator? 3. What's your copy operator? 4. What's your mutation operator, if you use any? 5. What's the size of the initial generation, and how are programs generated? 6. When do you stop the evolution? Evolve it up to a xed iteration, when it satisfies a condition on the fitness function, or a combination of the two? 7. What's the output of your system for the training set in the next page?

Design and implement a genetic programming system to evolve some perceptrons that

x1 x2 x3 x4 x5 x6 x7 x8 x9|Output 0.05 0.47 0.89 0.28 0.37 0.58 0.71 0.75 0.29 0.62 0.2 0.71 0.61 0.01 0.63 0.52 0.04 0.94 0.61 0.7 0.63 0.43 0.79 0.83 0.92 0.81 0.27 0.75 0.42 0.03 0.02 0.23 0.42 0.13 0.81 0.51 0.66 0.07 0.88 0.83 0.92 0.83 0.3 0.35 0.79 0.57 0.56 0.36 0.94 0.5 0.7 0.56 0.01 0.78 0.07 0.66 0.54 0.6 0.38 0.67 0.66 0.96 0.55 0.75 0.43 0.11 0.04 0.35 0.48 0.25 0.59 0.5 0.91 0.87 0.65 0.95 0.42 0.27 0.25 0.2 0.76 0.46 0.47 0.13 0.99 0.82 0.56 0.72 0.16 0.62 0.09 0.08 0.17 0.57 0.24 0.68 0.99 0.71 0.48 0.34 0.5 0.26 0.34 0.06 0.86 0.58 0.41 0.74 0.7 0.77 0.27 0.98 0.52 0.38 0.32 0.85 0.46 0.66 0.57 0.22 0.77 0.4 0.1 0.61 0.38 0.210 0.4 0.92 0.79 0.18 0.58 0.3 0.08 0.71 0.7 0.3 0.85 0.36 0.23 0.68 0.15 0.21 0.01 0.31 0.8 0.05 0.21 0.44 0.74 0.25 0.85 0.83 0.06 0.26 0.32 0.24 0.18 0.74 0.36 0.09 0.48 0.18 0.76 0.65 0.52 0.0 0.39 0.64 0.36 0.03 0.62 1 0.4 0.46 0.71 0.73 0.34 0.29 0.75 0.93 0.19 0.59 0.66 0.28 0.19 0.87 0.31 0.37 0.84 0.41 0.35 0.73 0.43 0.46 0.48 0.49 0.48 0.86 0.1 0.47 0.45 1.0 0.91 0.24 0.04 0.72 0.17 0.7 0.86 0.11 0.28 0.19 0.96 0.07 0.48 0.92 0.91 0.78 0.2 0.49 0.26 0.83 0.42 0.03 0.42 0.73 0.76 0.01 0.63 0.82 0.5 0.8 0.6 0.52 0.63 0.9 0.31 0.22 0.22 0.31 0.72 0.45 0.79 0.72 0.84 0.72 0.09 0.67 0.95 0.54 0.05 0.97 0.16 0.94 0.07 0.43 0.19 0.1 0.63 0.5 0.78 0.35 0 0.51 0.55 0.27 0.84 0.41 0.38 0.75 0.91 0.53 0 0.68 0.99 0.05 0.56 0.63 0.81 0.1 0.58 0.51 0.31 0.77 0.85 0.04 0.32 0.87 0.88 0.04 0.42 0.32 0.98 0.38 0.77 0.54 0.57 0.22 0.46 1.0 0.57 0.1 0.98 0.44 0.5 0.37 0.7 0.54 0.46 0.24 0.18 0.17 0.08 0.62 0.46 0.93 0.98 0.32 0.39 0.84 0.92 0.31 0.34 0.14 0.72 0.85 0.24 0.86 0.84 0.75 0.59 0.73 0.57 0.77 0.38 0.67 1 0.0 0.77 0.97 0.4 0.64 0.02 0.46 0.84 0.14 0.74 0.7 0.6 0.79 0.34 0.24 0.64 0.82 0.38 0 0.71 0.36 0.95 0.23 0.08 0.46 0.96 0.04 0.28 0.61 0.03 0.67 0.83 0.03 0.46 0.58 0.36 0.21 0.72 0.87 0.45 0.48 0.47 0.61 0.67 0.28 0.45 0.23 0.66 0.03 0.04 0.44 0.23 0.76 0.11 0.77 0.35 0.21 0.69 0.32 0.41 0.91 0.44 0.13 0.49 0.92 0.25 0.34 0.85 0.12 0.37 0.23 0.79 0.81 0.58 0.68 0.26 0.83 0.97 0.78 0.3 0.14 0.9 0.24 0.85 0.91 0.24 0.98 0.97 0.05 0.03 0.08 0.35 0.72 0.87 0.66 0.58 0.79 0.19 0.86 0.85 0.38 0.93 0.96 0.05 0.4 0.33 0.06 0.09 0.27 0 0 x1 x2 x3 x4 x5 x6 x7 x8 x9|Output 0.05 0.47 0.89 0.28 0.37 0.58 0.71 0.75 0.29 0.62 0.2 0.71 0.61 0.01 0.63 0.52 0.04 0.94 0.61 0.7 0.63 0.43 0.79 0.83 0.92 0.81 0.27 0.75 0.42 0.03 0.02 0.23 0.42 0.13 0.81 0.51 0.66 0.07 0.88 0.83 0.92 0.83 0.3 0.35 0.79 0.57 0.56 0.36 0.94 0.5 0.7 0.56 0.01 0.78 0.07 0.66 0.54 0.6 0.38 0.67 0.66 0.96 0.55 0.75 0.43 0.11 0.04 0.35 0.48 0.25 0.59 0.5 0.91 0.87 0.65 0.95 0.42 0.27 0.25 0.2 0.76 0.46 0.47 0.13 0.99 0.82 0.56 0.72 0.16 0.62 0.09 0.08 0.17 0.57 0.24 0.68 0.99 0.71 0.48 0.34 0.5 0.26 0.34 0.06 0.86 0.58 0.41 0.74 0.7 0.77 0.27 0.98 0.52 0.38 0.32 0.85 0.46 0.66 0.57 0.22 0.77 0.4 0.1 0.61 0.38 0.210 0.4 0.92 0.79 0.18 0.58 0.3 0.08 0.71 0.7 0.3 0.85 0.36 0.23 0.68 0.15 0.21 0.01 0.31 0.8 0.05 0.21 0.44 0.74 0.25 0.85 0.83 0.06 0.26 0.32 0.24 0.18 0.74 0.36 0.09 0.48 0.18 0.76 0.65 0.52 0.0 0.39 0.64 0.36 0.03 0.62 1 0.4 0.46 0.71 0.73 0.34 0.29 0.75 0.93 0.19 0.59 0.66 0.28 0.19 0.87 0.31 0.37 0.84 0.41 0.35 0.73 0.43 0.46 0.48 0.49 0.48 0.86 0.1 0.47 0.45 1.0 0.91 0.24 0.04 0.72 0.17 0.7 0.86 0.11 0.28 0.19 0.96 0.07 0.48 0.92 0.91 0.78 0.2 0.49 0.26 0.83 0.42 0.03 0.42 0.73 0.76 0.01 0.63 0.82 0.5 0.8 0.6 0.52 0.63 0.9 0.31 0.22 0.22 0.31 0.72 0.45 0.79 0.72 0.84 0.72 0.09 0.67 0.95 0.54 0.05 0.97 0.16 0.94 0.07 0.43 0.19 0.1 0.63 0.5 0.78 0.35 0 0.51 0.55 0.27 0.84 0.41 0.38 0.75 0.91 0.53 0 0.68 0.99 0.05 0.56 0.63 0.81 0.1 0.58 0.51 0.31 0.77 0.85 0.04 0.32 0.87 0.88 0.04 0.42 0.32 0.98 0.38 0.77 0.54 0.57 0.22 0.46 1.0 0.57 0.1 0.98 0.44 0.5 0.37 0.7 0.54 0.46 0.24 0.18 0.17 0.08 0.62 0.46 0.93 0.98 0.32 0.39 0.84 0.92 0.31 0.34 0.14 0.72 0.85 0.24 0.86 0.84 0.75 0.59 0.73 0.57 0.77 0.38 0.67 1 0.0 0.77 0.97 0.4 0.64 0.02 0.46 0.84 0.14 0.74 0.7 0.6 0.79 0.34 0.24 0.64 0.82 0.38 0 0.71 0.36 0.95 0.23 0.08 0.46 0.96 0.04 0.28 0.61 0.03 0.67 0.83 0.03 0.46 0.58 0.36 0.21 0.72 0.87 0.45 0.48 0.47 0.61 0.67 0.28 0.45 0.23 0.66 0.03 0.04 0.44 0.23 0.76 0.11 0.77 0.35 0.21 0.69 0.32 0.41 0.91 0.44 0.13 0.49 0.92 0.25 0.34 0.85 0.12 0.37 0.23 0.79 0.81 0.58 0.68 0.26 0.83 0.97 0.78 0.3 0.14 0.9 0.24 0.85 0.91 0.24 0.98 0.97 0.05 0.03 0.08 0.35 0.72 0.87 0.66 0.58 0.79 0.19 0.86 0.85 0.38 0.93 0.96 0.05 0.4 0.33 0.06 0.09 0.27 0 0

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!