Question: Determine whether S=((7, 6, 3), (0, 6, 3), (0, 0, 3)) is a basis for R. If it is, write =(28, 18, 21) as
Determine whether S=((7, 6, 3), (0, 6, 3), (0, 0, 3)) is a basis for R. If it is, write =(28, 18, 21) as a linear combination of the vectors in O a. S is a basis for R and - =-4(7, 6, 3)+(0, 6, 3)+4(0, 0, 3)=(28, 18, 21). O b. S is a basis for R and u=4(7,6,3)-(0, 6, 3)+4(0, 0, 3)=(28, 18, 21). Oc. S is a basis for R3 and u=-4(7, 6, 3)+(0, 6, 3)-4(0, 0, 3)=(28, 18, 21) and u=4(7, 6, 3)-(0, 6, 3)-4(0, 0, 3)=(28, 18, 21). R Od. S is a basis for - Oe. S is not a basis for R.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
