Question: Determine whether the following statements are true or false. If a statement is true, then explain why using definitions and/or theorems. If a statement is
Determine whether the following statements are true or false.
If a statement is true, then explain why using definitions and/or theorems.
If a statement is false, then provide a counterexample. Your counterexample may be either the
graph of the function or the analytical definition
A) If limx5f(x) does not exist, then limx5(f(x))2 does not exist
B) Suppose f'' is continuous on (- , ) if f'(-2) = 0 and f''(-2) < 0, then f must achieve both an absolute and local maximum at x = - 2
C) Suppose we know that a particle is speeding up on the interval (0 , 5) and slowing down
on the interval (5 , 7). It is possible for the particle to be moving forward on both (0, 5) and (5, 7)
D) If f is a continuous function defined on (- , ) such that f(x) > 0 for all x, then (f(x))2dx=(f(x)dx)2
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
