Question: Determine whether the statement is True or False (1 point each). If it is true, explain why. If it false, explain why or give an
Determine whether the statement is True or False (1 point each). If it is true, explain why. If it false, explain why or give an example that disproves the statement (2 points each). ANSWER ALL QUESTIONS AND SHOW ALL THE WORK If {a_(n)} converges, then {(a_(n))/(n)} converges to zero. If |r|<1, then \sum_(n=1)^(\infty ) ar^(n)=(a)/(1-r) If \sum_(n=1)^(\infty ) a_(n)\sum_(n=1)^(\infty ) b_(n)\sum_(n=1)^(\infty ) a_(n)\sum_(n=1)^(\infty ) b_(n)\lim_(n->\infty ){a_(n)}=0\sum_(n=1)^(\infty ) a_(n)0 and \sum_(n=1)^(\infty ) a_(n) diverges, then \sum_(n=1)^(\infty ) b_(n) diverges. If \lim_(n->\infty ){a_(n)}=0, then \sum_(n=1)^(\infty ) a_(n) converges.0 and \sum_(n=1)^(\infty ) a_(n) converges, then \sum_(n=1)^(\infty ) b_(n) diverges. If 0 and \sum_(n=1)^(\infty ) a_(n) diverges, then \sum_(n=1)^(\infty ) b_(n) diverges. If \lim_(n->\infty ){a_(n)}=0, then \sum_(n=1)^(\infty ) a_(n) converges.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
