Question: Develop a linear program to find an optimal plan. We define the following variables: I i : inventory at the end of period i .


Develop a linear program to find an optimal plan. We define the following variables: Ii: inventory at the end of period i. Oi: number of units produced by overtime production in period i. Ri: number of units produced by regular production in period i. A correct linear programming formulation is:
| a. | Minimize Cost = 3I1 +3I2 +3I3 + 3I4 Subject to I0 +O1 +R1 d1 =I1 I1 +O2 +R2 d2 =I2 I2 +O3 +R3 d3 =I3 I3 +O4 +R4 d4 =I4 Ri 3000, i = 1,2,3,4 Ri, Oi, Ii 0, i = 1,2,3,4 | |
| b. | Minimize Cost = 3I1 +3I2 +3I3 +3I4 +10O1 +10O2 +10O3 +10O4 Subject to I0 +O1 +R1 d1 =I1 I1 +O2 +R2 d2 =I2 I2 +O3 +R3 d3 =I3 I3 +O4 +R4 d4 =I4 Ri 3000, i = 1,2,3,4 | |
| c. | Minimize Cost = 3I1 +3I2 +3I3 +3I4 +10O1 +10O2 +10O3 +10O4 Subject to I0 +O1 +R1 d1 =I1 I1 +O2 +R2 d2 =I2 I2 +O3 +R3 d3 =I3 I3 +O4 +R4 d4 =I4 Ri, Oi, Ii 0, i = 1,2,3,4 | |
| d. | Minimize Cost = 3I1 +3I2 +3I3 +3I4 +10O1 +10O2 +10O3 +10O4 Subject to I0 +O1 +R1 d1 =I1 I1 +O2 +R2 d2 =I2 I2 +O3 +R3 d3 =I3 I3 +O4 +R4 d4 =I4 Ri 3000, i = 1,2,3,4 Ri,Oi,Ii 0, i = 1,2,3,4 | |
| e. | Minimize Cost = 10O1 + 10O2 + 10O3 + 10O4 Subject to I0 + O1 + R1 d1 = I1 I1 +O2 +R2 d2 =I2 I2 +O3 +R3 d3 =I3 I3 +O4 +R4 d4 =I4 Ri 3000, i = 1,2,3,4 Ri, Oi, Ii 0, i = 1,2,3,4 |
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
