Question: Evaluate the integral by making the given substitution. [$423) tan(22:) dsc, u = 2:: Answer: C] +0 Evaluate x edx. If the integral does not

![u = 2:: Answer: C] +0 Evaluate x edx. If the integral](https://s3.amazonaws.com/si.experts.images/answers/2024/07/6687e37634aa8_6226687e3760a351.jpg)








![Enter arctan(x) for tan x , sin(x) for sin x . ]\fFind](https://s3.amazonaws.com/si.experts.images/answers/2024/07/6687e37903b60_6246687e378e6c5e.jpg)




![and ) ! ]Evaluate xvx - 2 dx. If the integral does](https://s3.amazonaws.com/si.experts.images/answers/2024/07/6687e37a7b516_6266687e37a69e59.jpg)


Evaluate the integral by making the given substitution. [$423) tan(22:) dsc, u = 2:: Answer: C] +0 Evaluate x edx. If the integral does not exist, enter DNE. Definite Integral =Evaluate x2 cos(x3 ) dx. Definite Integral =Evaluate the definite integral: 2xvx + 2 da =Evaluate the following definite integral. -12 17 c = 4 3x 5Evaluate the definite integral. TT / 4 sin(4t) dtEvaluate 1 1+ . dx. If the integral does not exist, enter DNE. Definite Integral =Evaluate 1/2 3sin x dx. V1 -x2 If the integral does not exist, enter DNE. Definite Integral =\fEvaluate the indefinite integral. 24 (23 + 5) 12 da Integral = [NOTE: Remember to enter all necessary *, (, and ) ! Enter arctan(x) for tan x , sin(x) for sin x . ]\fFind the following integral. Note that you can check your answer by differentiation. In' (z) dz = z\fEvaluate the indefinite integral get - dx ex + 1 Note: Any arbitrary constants used must be an upper-case "C".Evaluate the indefinite integral. dx [NOTE: Remember to enter all necessary *, (, and ) ! ]Evaluate xvx - 2 dx. If the integral does not exist, enter DNE. Definite Integral =
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
