Question: First we need a measure to compare between plots to meet the above criteria of the unpaired, independent sample, t-test, 'dependent variable is measured on

First we need a measure to compare between plots to meet the above criteria of the unpaired, independent sample, t-test, 'dependent variable is measured on an incremental level, such as ratios or intervals.'

[32]:

myplot1 = 'BUCA'

[33]:

# Select a particular plot name based on examination of mapped data and descriptions in the plot description dataset.PLT = myplot1 # Put the name for study hear, i.e ='STRD'data1 = MSH_YEAR.where('PLOT_NAME',are.contained_in(PLT)).sort('YEAR',descending=False)data1

[33]:

PLOT_ID PLOT_NAME PLOT_NUMBER YEAR RICHNESS COVER_% HPRIME EVENNESS FREQUENCY
BUCA011980 BUCA 1 1980 10 15.5 1.886 0.819 29.5
BUCA031980 BUCA 3 1980 15 32.2 1.433 0.529 21.5
BUCA041980 BUCA 4 1980 9 18.5 1.754 0.798 31.4
BUCA011981 BUCA 1 1981 15 50.7 1.656 0.612 26.9
BUCA031981 BUCA 3 1981 17 71.2 1.324 0.467 18.8
BUCA041981 BUCA 4 1981 14 55.5 1.787 0.677 26.7
BUCA011982 BUCA 1 1982 16 39.6 1.765 0.637 26.1
BUCA031982 BUCA 3 1982 20 46.9 1.424 0.475 20.8
BUCA041982 BUCA 4 1982 16 38.7 1.931 0.697 29.5
BUCA011983 BUCA 1 1983 16 43.2 1.408 0.508 23.7

... (64 rows omitted)

[34]:

YEAR1 = data1['YEAR'].min() YEAR2 = data1['YEAR'].max()

[35]:

growth1 = data1.where('YEAR',YEAR1)['COVER_%']/data1.where('YEAR',YEAR2)['COVER_%']growth1

[35]:

array([ 0.30273438, 0.50234009, 0.33944954])

[36]:

s1 = np.std(growth1)

[37]:

myplot2 = 'PUPL'

[38]:

# Select a particular plot name based on examination of mapped data and descriptions in the plot description dataset.PLT = myplot2 # Put the name for study hear, i.e ='STRD'data2 = MSH_YEAR.where('PLOT_NAME',are.contained_in(PLT)).sort('YEAR',descending=False)data2.sort('YEAR')

[38]:

PLOT_ID PLOT_NAME PLOT_NUMBER YEAR RICHNESS COVER_% HPRIME EVENNESS FREQUENCY
PUPL011989 PUPL 1 1989 5 0.5 1.609 1 3.4
PUPL021989 PUPL 2 1989 7 0.7 1.946 1 4.1
PUPL031989 PUPL 3 1989 4 0.4 1.386 1 2.5
PUPL041989 PUPL 4 1989 7 0.7 1.946 1 2.1
PUPL051989 PUPL 5 1989 5 0.5 1.609 1 2.6
PUPL061989 PUPL 6 1989 5 0.5 1.609 1 5
PUPL071989 PUPL 7 1989 0 0 0 0 0
PUPL081989 PUPL 8 1989 1 0.1 0 0 1
PUPL091989 PUPL 9 1989 7 1 1.748 0.898 5.7
PUPL101989 PUPL 1 1989 5 0.5 1.609 1 2.4

... (242 rows omitted)

[39]:

YEAR1 = data2['YEAR'].min() YEAR2 = data2['YEAR'].max()

[40]:

growth2 = data2.where('YEAR',YEAR1)['COVER_%']/data2.where('YEAR',YEAR2)['COVER_%']growth2

[40]:

array([ 0.04385965, 0.04216867, 0.03174603, 0.03825137, 0.0625 , 0.13888889, 0. , 0.00512821, 0.03846154, 0.02645503, 0.01385042, 0. ])

[41]:

s2 = np.std(growth2)

[42]:

diffmean = np.mean(growth2) - np.mean(growth1)

[43]:

se1 = s1/np.sqrt(n)se2 = s2/np.sqrt(n)std_error = np.sqrt((se1**2+se2**2)/2)paired_std_error = s/np.sqrt(n)print(f'The mean COVER_% change is: {diff_means:.2f}')print(f'The standard deviation of the COVER_% differences is: {s:.3f}')print(f'The paired standard error is: {paired_std_error:.4f}')print(f'The degrees of freedom is: {dof}')

The mean COVER_% change is: 14.67 The standard deviation of the COVER_% differences is: 3.496 The paired standard error is: 0.2202 The degrees of freedom is: 502

[44]:

t = 14.67/0.2202print("The t value is:", t)

The t value is: 66.62125340599455

[45]:

p = 0.05

Outcome of Hypothesis Test and conclusion about selected plots...

Part 2: Testing a trend

Question 6

Now we will look at the time trend of COVER_% and RICHNESS using the changes function you developed and used in Part 2 of Lab 07. With changes we are looking at the number of increases minus decreases over the time period.

changes function:

[54]:

def diff_n(values, n): ''' Parameters: values is an array of numbers n is the offset (how far apart the numbers are in the array) ''' return np.array(values)[n:] - np.array(values)[:-n]

[55]:

def changes(array, years = 1): "Return the number of increases minus the number of decreases" differences = diff_n(array, years) increases = np.count_nonzero(differences > 0) decreases = np.count_nonzero(differences < 0) return increases - decreases

[56]:

test_stat = np.sum(....column('...'))print('Total increases minus total decreases, across all years:', test_stat)

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!