Question: For this assignment use the following datafile: data file First, participants were asked to rate a series of different words on their meaningfulness or pleasantness.

For this assignment use the following datafile: data file

First, participants were asked to rate a series of different words on their meaningfulness or pleasantness. Scores for both questionnaires were rated on a Likert scale from 1 (not meaningful, not pleasant) to 5 (very meaningful, very pleasant). Once the ratings were obtained, the researchers grouped these words into sets based on previous research. This produced four sets of words: Education words, Goal words, Noun words, and Religion words. The data set provided contains the average ratings for the words by set. These same participants then completed a "purpose in life questionnaire" (PIL), where the scores on questions were totaled for each participant.

IV:

  • Control variables: Age, gender (1=female, 2=male)
  • Experimental manipulation: priming type (1=meaningful, 2=pleasantness)
  • Education words averaged (i.e., accomplish, College, Degree, Education, Grades, Graduate, School, Teacher, Undergrad, University)
  • Goals words averaged (i.e., achieve, ambition, become, goals, progress, success)
  • Nouns words averaged (i.e., everything, know, lot, many, mind, much, right, some, something, thing, time, what, when)
  • Religion words averaged (i.e., serve, glorify)

DV: PIL total - sum of scores on the purpose in life questionnaire

Research Question:We would like to test whether word ratings predict scores on the PIL questionnaire, above and beyond control variables and experimental manipulation. HINT: To test this, you will need a regression model that includes demographics and priming type (the null model) as the sole predictors, as well as a second regression model that includes actual predictor variables in addition to the controls (the regression model).

Data below:

age (ordinal variable) gender (nominal variable) primetyp (nominal variable) PILSF_total_w1 (scale variable) educationavg (scale variable) goalsavg (scale variable) nounsavg (scale variable) religionavg (scale variable)
18 1 1 16 2.666667 4.285714 3.538462 4
19 1 1 24 3.444444 3.428571 3.230769 4.5
18 1 1 25 3.555556 4.857143 3.153846 3
18 1 1 22 4.666667 4.571429 3.384615 3
19 1 1 24 4.444444 5 3.692308 5
19 1 1 26 4.777778 4.714286 3.615385 4
19 1 1 21 4 4.285714 3.076923 4.5
20 1 1 24 4.111111 4.285714 3.846154 3
19 1 1 22 3 3.857143 3.153846 3.5
19 1 1 21 3.444444 4 3.384615 2.5
20 1 1 28 3.666667 4.571429 2.846154 3.5
18 1 1 24 3.666667 4.571429 3.538462 3
19 1 1 25 3.888889 4.571429 3.307692 4.5
18 1 1 22 4.222222 4.571429 3.307692 3
19 1 1 24 3.222222 3.714286 3.230769 3
18 1 1 22 3.888889 4.714286 3.153846 3.5
18 1 2 22 2.666667 2.285714 3.076923 4
19 1 2 16 2.666667 2.714286 3.230769 2.5
18 1 2 20 3.111111 2.571429 2.384615 4
21 1 2 24 4.888889 4.428571 2 3
19 1 2 28 4.555556 5 2.538462 5
18 1 2 19 4.111111 4.571429 4.076923 4
18 1 2 20 4.444444 4.142857 3.615385 3
32 1 2 18 3.888889 4 3.769231 3.5
24 1 2 24 4.555556 5 2.923077 3
18 1 2 26 4.888889 5 3.076923 3
21 1 2 21 3.555556 3.857143 3.076923 3
22 1 2 24 4.555556 4.714286 2.538462 3.5
20 1 2 22 3.888889 4.142857 3.307692 4
21 1 2 20 4.222222 4.571429 3 3.5
18 1 2 23 4.444444 4.428571 2.846154 3.5
18 1 2 20 4.333333 4.428571 2.923077 3.5
19 2 1 26 5 5 5 5
18 2 1 24 3 3.428571 3.307692 1.5
18 2 1 22 3.111111 4.714286 3.076923 3.5
20 2 1 22 4.777778 4.857143 3.692308 2.5
18 2 1 24 3.777778 4.857143 2.384615 3.5
18 2 1 27 3.888889 5 2.769231 4.5
18 2 1 21 2.777778 4 2.615385 3
18 2 1 23 4 3.714286 3.615385 3
18 2 1 22 3.777778 4.714286 3.923077 5
23 2 1 23 4.555556 4.857143 2.692308 4
41 2 1 26 4.777778 5 4.076923 5
18 2 1 25 4.777778 5 3.307692 3
21 2 1 24 4.666667 4.571429 4.153846 4
18 2 1 28 5 5 4 4
18 2 1 25 4.666667 5 3.769231 5
20 2 1 20 4.111111 4.714286 3.615385 2.5
19 2 1 21 3.555556 3.571429 3.307692 2.5
22 2 1 22 4.444444 4.571429 4.153846 4.5
18 2 1 23 3.111111 4.142857 3.538462 4
19 2 1 22 3.111111 4.285714 3.153846 3.5
18 2 1 28 4.777778 4.714286 3.538462 4
20 2 1 28 4.444444 5 3.769231 5
19 2 1 25 3.666667 4.857143 3.692308 4
19 2 1 18 3.555556 4.571429 3.538462 4.5
19 2 1 18 4.444444 4.714286 3.076923 4.5
18 2 1 19 3 4 3.384615 3.5
20 2 1 21 4.333333 4.428571 3.307692 4.5
19 2 1 27 4.333333 4.857143 3.923077 3
18 2 1 27 4.222222 4.857143 4.230769 3.5
18 2 1 25 4.555556 4.571429 3.384615 3.5
18 2 1 19 4 4 3.384615 4
18 2 1 25 3.444444 4.428571 3.307692 3
19 2 1 25 4.666667 4.857143 3.538462 4
19 2 1 25 4.333333 5 3.153846 4
18 2 1 25 3.555556 4.571429 3.153846 3.5
18 2 1 22 4.111111 4.428571 3.538462 4.5
21 2 1 27 4.555556 4.857143 3.769231 3.5
19 2 1 22 4.555556 4.714286 3.461538 4
18 2 1 27 4.222222 4.857143 4 3.5
19 2 1 20 3.555556 3.714286 3.076923 3
18 2 1 28 4 4.857143 3.230769 3.5
19 2 1 26 3.333333 3.857143 3.461538 3
20 2 1 22 3.333333 4.142857 3 3.5
18 2 1 25 4.444444 4.857143 3.384615 3.5
19 2 1 18 4.444444 4.714286 3.384615 4
21 2 1 22 4.111111 4.571429 3.461538 3
22 2 1 19 3.333333 4 3.307692 3
18 2 1 17 3.777778 4 3.230769 3
18 2 1 25 4.222222 4.428571 3.384615 4
20 2 1 23 3.666667 4.428571 3.384615 4
18 2 1 25 3.888889 4.571429 3.615385 4
18 2 2 23 4.666667 3.571429 3.153846 5
21 2 2 27 5 5 5 5
20 2 2 21 4.222222 4.571429 3.538462 2
21 2 2 28 4.333333 4.428571 1.615385 3
18 2 2 15 5 5 2.076923 4.5
19 2 2 24 4 4.142857 1.846154 4.5
19 2 2 21 2.888889 3.428571 2.153846 3
19 2 2 25 4.888889 4.428571 2.076923 4
43 2 2 23 4.555556 5 3.384615 2.5
21 2 2 28 4.555556 4.428571 1.923077 4
18 2 2 27 4.777778 5 2.384615 5
19 2 2 25 4.777778 4.428571 2.692308 2.5
19 2 2 27 4.666667 4.714286 2.230769 3
19 2 2 23 4.888889 5 4.307692 5
18 2 2 22 4.333333 4.714286 3 2.5
18 2 2 24 4.888889 4.857143 4.153846 3.5
20 2 2 25 5 5 3.692308 3
21 2 2 20 3.888889 4.285714 3.307692 5
20 2 2 15 4.777778 4.285714 3.384615 3
18 2 2 22 4.222222 4 3.153846 2.5
18 2 2 26 3.888889 4.714286 3.538462 4
19 2 2 19 4.888889 4.571429 2.384615 4
18 2 2 22 4.777778 4.428571 3.538462 5
18 2 2 26 4.888889 5 4.230769 4
19 2 2 28 4.777778 4.857143 4.230769 4.5
18 2 2 24 4.777778 5 4.230769 4.5
19 2 2 17 3.555556 4.285714 3 4
20 2 2 26 4.222222 4.142857 3 2.5
19 2 2 24 5 5 4.153846 4
19 2 2 25 5 4.857143 2.923077 5
19 2 2 26 4.111111 4.571429 3.153846 5
18 2 2 22 4.555556 4.857143 2.692308 3
20 2 2 24 4.444444 4.428571 2.384615 4.5
18 2 2 22 4 4.714286 3.384615 4.5
18 2 2 22 4 4.714286 2.692308 4
21 2 2 15 4.444444 4.285714 2.538462 4.5
18 2 2 23 4.777778 5 2.538462 4
18 2 2 25 4.444444 4.428571 3.384615 5
18 2 2 23 4.888889 5 3 5
19 2 2 20 4.111111 4.285714 3.769231 3.5
18 2 2 23 4.888889 4.714286 2.692308 4.5
22 2 2 17 4.666667 4.142857 3.192308 4
19 2 2 22 4.444444 5 3.769231 4.5
19 2 2 28 4.555556 4.714286 2.769231 3
18 2 2 25 4.444444 4.857143 3.230769 5
18 2 2 25 4.666667 4.571429 2.461538 3.5
18 2 2 26 4.222222 4.857143 3.461538 4.5
21 2 2 25 4 4.428571 2.769231 4.5
18 2 2 26 4.666667 4.857143 3.615385 5
22 2 2 23 4.222222 3.857143 3.153846 3.5
18 2 2 20 4.888889 5 3.923077 4
19 2 2 23 4.111111 4.714286 3 3.5
18 2 2 26 4.888889 4.571429 3.615385 4
19 2 2 24 4.444444 5 3.230769 4.5
18 2 2 20 4.222222 4.714286 3 4.5
21 2 2 24 4.333333 4.714286 3.692308 4
21 2 2 20 4.444444 5 3.384615 4
18 2 2 19 4.777778 5 3.769231 4.5
18 2 2 25 4.777778 5 3.153846 3.5
18 2 2 23 4.555556 4.714286 2.692308 3.5
19 2 2 22 4.555556 4.857143 3.692308 4.5
18 2 2 24 4.666667 4.571429 3.538462 3.5
19 2 2 25 4.777778 4.571429 3.384615 4.5
19 2 2 22 4.777778 4.714286 2.769231 4
19 2 2 21 4.333333 4.428571 3.461538 4.5
19 2 2 24 4 4.285714 3.307692 4
18 2 2 27 4.666667 4.714286 3.538462 4.5
18 2 2 25 4.888889 5 3.384615 4.5
18 2 2 24 4.777778 5 3.384615 4.5
21 2 2 26 4.444444 4.714286 3.230769 4.5
19 2 2 20 4.777778 4.857143 3.538462 4
22 2 2 28 4.555556 4.571429 3.153846 3.5
19 2 2 24 4.666667 4.714286 3 4

Questions:

1. How is experiment done on JASP (explain the steps)?

2. Summarize results from analyses in "APA format" of multiple regression.

Remember research question:We would like to test whether word ratings predict scores on the PIL questionnaire, above and beyond control variables and experimental manipulation.

3. Using the correct plots from the regression model (not the null), decide and justify whether or not the following assumptions are met (show plots if you can):

  • Linearity
  • Homoscedasticity
  • Normality of the residuals

4. Include all the Pearson's r correlations for the following variable pairs, limit to exactly 3 decimals:

  • Age and Education:
  • Age and Goals:
  • Age and Nouns:
  • Age and Religion:

Reference: https://moodle.concordia.ca/moodle/mod/quiz/attempt.php?attempt=3263334&cmid=3762125&page=1

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!