Question: from transformers import Wav 2 Vec 2 ForCTC, Wav 2 Vec 2 Tokenizer import torch import librosa import soundfile as sf model = Wav 2
from transformers import WavVecForCTC, WavVecTokenizer
import torch
import librosa
import soundfile as sf
model WavVecForCTC.frompretrainedtheainerdWavVeclargexlsrhindi'
tokenizer WavVecTokenizer.frompretrainedtheainerdWavVeclargexlsrhindi'
import pandas as pd
df pdreadcsvtraincsv
dfhead
df dfdropcolumns age"gender","upvotes","downvotes","accents","variant","locale","segment"
printdfcolumns
## df dfdropcolumns clientid
list
sentences
samples
for i in rangesamples:
list.appenddfpathi
sentences.appenddfsentencei
printlist
printsentences
## printlensentences
import os
path "commonvoiceclips
filepath
for i in rangesamples:
filepath.appendospath.joinpathlisti
## printfilepathi
# Function to transcribe an audio file
def transcribeaudiofilepath:
# Load the audio file
audio, sr librosa.loadfilepath, sr ## resampling
# Convert the audio to a format that can be input to the model
inputvalues tokenizeraudio returntensorsptinputvalues
# Run the audio through the model to generate the transcription
#with torch.nograd:
logits modelinputvalueslogits
predictedids torch.argmaxlogits dim
transcription tokenizer.decodepredictedids
return transcription
transcription
for i in rangesamples:
transcription.appendtranscribeaudiofilepathi
printfTranscription for filepathi : transcriptioni
help me to finetune this model and add code in my written code for fine tuning that should work correctly without error and explain in detail and also explain in detail any other alternative approach please
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
