Question: function Compute(n: nonnegative integer) if n =0 then p = 1; else if n = 1 then P = 2; else p - Compute(n-1) *Compute(n
function Compute(n: nonnegative integer) if n =0 then p = 1; else if n = 1 then P = 2; else p - Compute(n-1) *Compute(n - 2); return p: Find the worst-case complexity function T(n) of the above algorithm as a recurrence relation, considering only comparison and arithmetic operations. Mark the option which also specifies the complexity of the algorithm correctly. O T(n) = F(n - 1) * T(n - 2) + 5 n > 2, T(0) = 1, T(1) = 2 O(n) OT(n) = T(n-1) + T(n - 2)+5 na 2. T(0) = 1. T(1) = 2 0(3) T(n) = (n - 1) + (n - 2) + 5 n = 2, T(0) = 1, T(1) = 2 O(n) 9 T(n) = F(n - 1) + Tn - 2) + 5 n = 2, T0) = 1, T(1) = 2 0(3) OT(n) = (n - 1)2 + (n - 2)2 +5 n 22, TO) = 1, T(1) = 2 Oin2 0 T(n) = F(n - 1) * Tn - 2) + 5 n> 2, T(0) = 1, T(1) = 2 (3)
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
