Question: ---------------------------------------- function [h,y] = lms(x,d,delta,N) M = length(x); y = zeros(1,M); h = zeros(1,N)' for n = N:M x1 = x(n:-1:n-N+1); y = h *
----------------------------------------
function [h,y] = lms(x,d,delta,N)
M = length(x);
y = zeros(1,M);
h = zeros(1,N)'
for n = N:M
x1 = x(n:-1:n-N+1);
y = h * x1';
e = d(n) - y;
h = h + delta*e*x1;
end
----------------------------------------
looking for code of matlab which do
Implement the LMS algorithm to estimate the filter coefficients w0,. w3 is assumed to be very small (try =0.01). Plot the learning curves: 1. The error e(n). 2. (J vs iteration steps). Where J is defined to be J=e2(n). 3. (10log10(J) vs iteration steps).
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
