Question: Given a = 0 . Letthepolynomialbe f ( t ) = 3 t + 2 and b = 2 , thenfromthelimitdefinitionofadefiniteintegral,wehave a b f (
Given
a=0.
Letthepolynomialbef(t)=3t+2andb=2,
thenfromthelimitdefinitionofadefiniteintegral,wehave
abf(t)=limn(nba)i=1nf(a+nbai)
02(3t+2)=limn(n20)i=1nf(0+n20i)
=limn(n2)i=1nf(n2i)
=limn(n2)i=1n(3(n2i)+2)
=limn(n2)i=1n(n6i+2)
=limn(n2)[n6i=1ni+i=1n2]
=limn(n2)[n6(2n(n+1))+2n]
=limn(n2)[3(n+1)+2n]
=limn(n2)[5n+3]
=limn(10+n6)
=limn10+limnn6
=10+0
=10
The answer to this is incorrect. Can someone show me the right result? Thanks
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
