Question: Given the following answer and sensitivity reports Objective Cell (Max) Cell Name Original Value Final Value $D$11 profit per unit Total Profit $2.1 $3,001.60 Variable
Given the following answer and sensitivity reports
| Objective Cell (Max) | ||||||
| Cell | Name | Original Value | Final Value | |||
| $D$11 | profit per unit Total Profit | $2.1 | $3,001.60 | |||
| Variable Cells | ||||||
| Cell | Name | Original Value | Final Value | Integer | ||
| $B$8 | units A | 1 | 1005.33 | Integer | ||
| $C$8 | units B | 1 | 1994.66 | Integer | ||
| Constraints | ||||||
| Cell | Name | Cell Value | Formula | Status | Slack | |
| $D$14 | Octane rating Lhs | 80 | $D$14>=$F$14 | Binding | 0 | |
| $D$15 | Gallons to run trucks Lhs | 3000 | $D$15>=$F$15 | Binding | 0 | |
| $D$16 | Storage capacity Lhs | 3000 | $D$16<=$F$16 | Not Binding | 1000 | |
| $D$17 | Availability of Fuel A Lhs | 1005.333333 | $D$17<=$F$17 | Not Binding | 994.6666667 | |
| $D$18 | Availability of Fuel B Lhs | 1994.666667 | $D$18<=$F$18 | Not Binding | 2005.333333 |
| Variable Cells | |||||||
| Final | Reduced | Objective | Allowable | Allowable | |||
| Cell | Name | Value | Cost | Coefficient | Increase | Decrease | |
| $B$8 | units A | 1005.333333 | 0 | 1.2 | 1E+30 | 0.3 | |
| $C$8 | units B | 1994.666667 | 0 | 0.9 | 0.3 | 1.5 | |
| Constraints | |||||||
| Final | Shadow | Constraint | Allowable | Allowable | |||
| Cell | Name | Value | Price | R.H. Side | Increase | Decrease | |
| $D$14 | Octane rating Lhs | 80 | 0.02 | 80 | 14920 | 15080 | |
| $D$15 | Gallons to run trucks Lhs | 3000 | 1 | 3000 | 1000 | 2992 | |
| $D$16 | Storage capacity Lhs | 3000 | 0 | 4000 | 1E+30 | 1000 | |
| $D$17 | Availability of Fuel A Lhs | 1005.333333 | 0 | 2000 | 1E+30 | 994.6666667 | |
| $D$18 | Availability of Fuel B Lhs | 1994.666667 | 0 | 4000 | 1E+30 | 2005.333333 |
The optimal solutions are A= __________ and B=__________. The optimal cost is __________.
Constraints __________ and __________ (1,2,3,4?) are working at full capacity. The unused capacity of the third constraint is _________.
If we add 100 units capacity to constraint 2 at a cost of $0.3 per unit, the amount of net benefit to the objective function is __________ dollars. (Keep two decimal points if needed.)
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
