Question: Given the following Linear program with the corresponding Excel printout: Maximize Z = 3X 1 + 5X 2 Subject to: X 1 + 2X 2
Given the following Linear program with the corresponding Excel printout:
Maximize Z = 3X1 + 5X2
Subject to:
X1 + 2X2 50
-X1 + X2 10
Non-negativity: X1 0
X2 0
EXCEL PRINTOUT
| Objective Cell (Max) | ||||||
| Cell | Name | Original Value | Final Value | |||
| $C$2 | Optimal value | 0 | 130 | |||
| Variable Cells | ||||||
| Cell | Name | Original Value | Final Value | Integer | ||
| $C$4 | X1 | 0 | 10 | Contin | ||
| $C$5 | X2 | 0 | 20 | Contin | ||
| Constraints | ||||||
| Cell | Name | Cell Value | Formula | Status | Slack | |
| $C$10 | Non-negativity for X2 | 20 | $C$10>=$E$10 | Not Binding | 20 | |
| $C$7 | Constraint 1 | 50 | $C$7<=$E$7 | Binding | 0 | |
| $C$8 | Constraint2 | 10 | $C$8>=$E$8 | Binding | 0 | |
| $C$9 | Non-negativity for X1 | 10 | $C$9>=$E$9 | Not Binding | 10 | |
| Variable Cells | ||||||||||||||||||
| Final | Reduced | Objective | Allowable | Allowable | ||||||||||||||
| Cell | Name | Value | Cost | Coefficient | Increase | Decrease | ||||||||||||
| $C$4 | X1 | 10 | 0 | 3 | 1E+30 | 0.5 | ||||||||||||
| $C$5 | X2 | 20 | 0 | 5 | 1 | 8 | ||||||||||||
| Constraints | ||||||||||||||||||
| Final | Shadow | Constraint | Allowable | Allowable | ||||||||||||||
| Cell | Name | Value | Price | R.H. Side | Increase | Decrease | ||||||||||||
| $C$10 | Non-negativity for X2 | 20 | 0 | 0 | 20 | 1E+30 | ||||||||||||
| $C$7 | Constraint 1 | 50 | 2.67 | 50 | 1E+30 | 30 | ||||||||||||
| $C$8 | Constraint2 | 10 | -0.33 | 10 | 15 | 60 | ||||||||||||
| $C$9 | Non-negativity for X1 | 10 | 0 | 0 | 10 | 1E+30 | ||||||||||||
Determine the optimal solution for X2.?
Determine the optimal solution for Z.?
Calculate the new optimal value if the cost coefficient of X1 is decreased from 3 to 2.6. Keep to 2 decimal places. For example $123.57 is 123.57????
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
